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MAL-512: M. Sc. Mathematics (Real Analysis) 

Lesson No. 1                                                                Written by Dr. Vizender Singh 

Lesson: Sequences and Series of Functions -I 

Structure: 
1.0    Learning Objectives 

1.1    Introduction  

1.2    Sequences and Series of Functions  

1.3    Check Your Progress 

1.4    Summary 

1.5    Keywords 

1.6    Self-Assessment Test  

1.7    Answers to check your progress  

1.8    References/ Suggested Readings 

 

1.0 Learning Objective 

 The learning objectives of this lesson are to consider sequences and series whose 

terms are functions rather than real numbers. These sequences and series are useful in 

obtaining approximations to a given function.  

 The study aims at two different notations of convergence for a sequence of functions: 

Point wise convergence and uniform convergence.  

 To study that for a sequence of variable terms most important question to be 

answered is that whether and to what extent, properties belonging to terms, viz. 

boundedness, continuity, integrability and differentiability, etc., are transferred to 

limit function of corresponding sequence (series).  

 To study under what conditions these properties are transferred to limit function. 

 

1.1 Introduction 
 

So far in earlier graduate classes, we have considered, most exclusively, sequence and series 

whose terms are real numbers. It was only in particular case that the terms depend upon 

variable. In this lesson, we shall consider sequence and series whose terms depends upon 
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variable, i.e., those whose terms are real valued functions defined on interval as domain. The 

sequences and series are denoted by {fn} and fn respectively.    

 

 1.2 Point-wise Convergence and Uniform Convergence  

Definition1.2.0 Let {fn}, n = 1, 2, 3,…be a sequence of functions, defined on an interval I, a  x 

 b. If there exits a real valued function f with domain I such that 

 f(x) = 
n

lim {fn(x)},  x I      

Then the function f is called the limit or the point-wise limit of the sequence {fn} on [a, b], and 

the sequence {fn} is said to be point-wise convergent to f on [a, b]. 

Similarly, if the series fn converges for every point xI, and we define  

  f(x) = 
0

( )n

n

f x




 ,  x  [a, b]    

the function f is called the sum or the point-wise sum of the series fn on [a, b]. 

Definition 1.2.1. If a sequence of functions {fn} defined on [a, b], converges point-wise to f, 

then to each  > 0 and to each x  [a, b], there corresponds an integer N such that  

  |fn(x)  f(x) | < ,    n  N                              (1.1) 

Remark 1.2.3. 

a)  The limit of differentials may not equal to the differential of the limit. 

Consider the sequence {fn}, where fn(x) = 
n

nxsin
, (x real).  

It has the limit 

  f(x) = 
n

lim fn(x) = 0 

    f (x) = 0,  and so f (0) = 0 

But  

  )x(fn
  = n  cos nx 

so that  

  n)0(fn    as n   

Thus at x = 0, the sequence { )}x('f n  diverges whereas the limit function f (x) = 0. 



Real Analysis  MAL-512 

DDE, GJUS&T, Hisar  5 |  

 

 

b)  Each term of the series may be continuous but the sum function f may not. 

  Consider the series  

  


0n

nf , where fn(x) = 
n2

2

)x1(

x


 (x real) 

At x = 0, each fn(x) = 0, so that the sum of the series f(0) = 0.  

 For x  0, it forms a geometric series with common ratio 1/(1 + x
2
), so that its sum 

function f(x) = 1. 

Hence, 

  f(x) = 
1, 0

0, 0

x

x





  

which is not continuous at x = 0. 

Definition 1.2.4. A sequence of functions {fn} is said to converge uniformly on an interval [a, 

b] to a function f if for any  > 0 and for all x  [a, b] there exists an integer N (independent of 

x but dependent on ) such that for all x[a, b] 

  |fn(x)  f(x)| < ,     n  N    (1.2) 

It is obvious that every uniformly convergent sequence is point-wise convergent, and the 

uniform limit function is same as the pointwise limit function. But the converse is not true.  

However non-point-wise convergence implies non-uniform convergence.  

Definition1.2.5. A series of functions fn is said to converge uniformly on [a, b] if the sequence 

{Sn} of its partial sums, defined by  

  Sn(x) = 


n

1i

i )x(f  

converges uniformly on [a, b]. 

OR 

A series of functions fn converges uniformly to f on [a, b] if for   > 0 and all x  [a, b] there 

exists an integer N (independent of x and dependent on ) such that for all x in [a, b] 

  |f1(x) + f2(x) + … + fn(x)  f(x)| < , for n  N 

Cauchy’s Criterion for Uniform Convergence. 
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Theorem 1.2.6. The sequence of functions {fn} defined on [a, b] converges uniformly on [a, b] 

if and only if for every  > 0 and for all x  [a, b], there exists an integer N such that  

  |fn+p(x)  fn(x) | < ,    n  N, p  1    …(1.3) 

Proof. Let the sequence of functions {fn} uniformly converge on [a, b] to the limit function f, so 

that for a given  > 0, and for all x  [a, b], there exist integers n1, n2 such that  

  | fn(x)  f(x)| < /2,   n  n1 

and  

  |fn+p(x)  f(x)| < /2,  n  n2, p  1 

Let N = max (n1, n2). 

 |fn+p(x)  fn(x)|  |fn+p(x)  f(x)| + |fn(x)  f(x)| 

   < /2 + /2 = ,   n  N, p  1 

Conversely. Let the given condition hold so by Cauchy’s general principle of convergence, {fn} 

converges for each x  [a, b] to a limit, say f and so the sequence converges pointwise to f.   

 For a given  > 0, let us choose an integer N such that (1.3) holds. Fix n, and let p in 

(1). Since fn+pf as p  , we get  

  |f(x)  fn(x)| <   n  N, all x [a, b] 

which proves that fn(x)  f(x) uniformly on [a, b]. 

Other form of this theorem is  : 

The sequence of functions {fn} defined on [a, b] converges uniformly on [a, b] if and only if for 

every  > 0 and for all x  [a, b], there exists an integer N such that  

   |fn(x)  fm(x)| < ,  n, m  N 

Theorem 1.2.7. A series of functions fn defined on [a, b] converges uniformly on   [a, b] if 

and only if for every  > 0 and for all x[a, b], there exists an integer N such that  

  |fn+1(x) + fn+2(x) +…+ fn+p(x)| < ,   n  N, p  1  …(1.4) 

 Proof.  Taking the sequence {Sn} of  partial sums  of functions fn , defined by  

  Sn(x) = 


n

1i

i )x(f  

and applying above theorem, we get the required result. 
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Example 1.2.8. Show that the sequence {fn}, where  

  fn(x) = 
22xn1

nx


, for  x   [a, b] .  

is not uniformly convergent on any interval [a, b] containing 0.  

Solution. The sequence converges pointwise to f, where f(x) = 0,  real x.  

Let {fn} converge uniformly in any interval [a, b], so that the pointwise limit is also the uniform 

limit. Therefore for given  > 0, there exists an integer N such that for all x[a, b], we have 

  0
xn1

nx
22



 < ,      n  N 

If we take  = 
3

1
, and t an integer greater than N such that 1/t  [a, b], we find on taking n = t 

and x = 1/t, that  

  
3

1

2

1

xn1

nx
22




 = . 

which is a contradiction and so the sequence is not uniformly convergent in the interval [a, b], 

having the point 1/t. But since 1/t0, the interval [a, b] contains 0. Hence the sequence is not 

uniformly convergent on any interval [a, b] containing 0.  

Example 1.2.9.   The sequence {fn}, where 

  fn(x) = x
n
 

is uniformly convergent on [0, k], k < 1 and only pointwise convergent on [0, 1]. 

 

Solution. 

  f(x) = 









 1x,1

1x0,0
)x(flim n

n
 

Thus the sequence converges pointwise to a discontinuous function on [0, 1] 

Let  > 0 be given. 

For 0 < x  k < 1, we have  

|fn(x)  f(x)| = x
n
 <  

if  
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ε

1

x

1
n









 

or if  

   n > log (1/)/log(1/x) 

This number, log (1/)/log (1/x) increases with x, its maximum value being  

log (1/)/log(1/k) in ]0, k], k > 0. 

Let N be an integer  log (1/)/log(1/k). 

   |fn(x)  f(x)| < ,        n  N, 0 < x < 1 

Again at x = 0,  

  |fn(x)  f(x)| = 0 < ,        n  1 

Thus for any  > 0,  N such that for all x[0, k], k < 1 

  |fn(x)  f(x)| < ,  n  N 

Therefore, the sequence {fn} is uniformly convergent in [0, k], k < 1.  

However, the number log (1/)/log (1/x) as x1 so that it is not possible to find an integer 

N such that |fn(x)  f(x)| < , for all n  N and all x in    [0, 1]. Hence the sequence is not 

uniformly convergent on any interval containing 1 and in particular on [0, 1]. 

Example 1.2.10.  Show that the sequence {fn}, where   

  fn(x) = 
nx

1


 

is uniformly convergent in any interval [0, b], b > 0. 

Solution. The limit  function is 

  f(x) = lim
n

fn(x)  = 0   x  [0, b] 

so that the sequence converges pointwise to 0. 

For any  > 0, 

  |fn(x)  f(x)| = 
nx

1


<  

if n > (1/)  x, which decreases with x, the maximum value being 1/. 

Let N be an integer  1/, so that for  > 0, there exists N such that  
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  |fn(x)  f(x)| < ,   n  N 

Hence the sequence is uniformly convergent in any interval [0, b], b > 0.  

Example 1.2.11. The series  fn, whose sum to n terms, Sn(x) 
2nxnxe  , is pointwise and not 

uniformly convergent on any interval [0, k], k > 0.  

Solution. The pointwise sum S(x) = 
n

lim Sn(x) = 0, for all x  0. Thus the series converges 

pointwise to 0 on [0, k]. 

Let us suppose, if possible, the series converges uniformly on [0, k], so that for any  > 0, there 

exists an integer N such that for all x  0,  

  |Sn(x)  S(x)| = 
2nxnxe  < ,         n  N   …(*) 

Let N0 be an integer greater than N and e
2


2
, then for x = 1/ 0N  and n = N0,  

(*) gives  

  N0/e <     N0 < e
2


2
 

so we arrive at a contradiction. Hence the series is not uniformly convergent on [0, k]. 

Note: The interval of uniform convergence is always to be a closed interval, that is, it must 

include the end points. But the interval for pointwise or absolute convergence can be of any 

type.  

Mn-Test for Uniform Convergence of Sequence 

Theorem 1.2.12 Let {fn} be a sequence of functions, such that  

  
n

lim fn(x) = f(x), x  [a, b] 

and let 

  Mn = 
]b,a[x

Sup


|fn(x)  f(x)| 

Then fn  f uniformly on [a, b] if and only if Mn  0 as n. 

Proof. Let fn  f uniformly on [a, b], so that for a given  > 0, there exists an integer N such 

that  

  |fn(x)  f(x)| < ,  n  N,     x  [a, b] 

  Mn = 
]b,a[x

Sup


|fn(x)  f(x)|  ,          n  N 
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  Mn  0, as n  

Conversely. Let Mn  0, as n  , so that for any  > 0,  an integer N such that  

  | Mn – 0 | < ,   n  N 

  
]b,a[x

Sup


|fn(x)  f(x)| < ,   n  N 

  |fn(x)  f(x)| < ,    n  N,    x  [a, b] 

  fn  f uniformly on [a, b]. 

Example 1.2.13 Show that ‘0’ is a point of non-uniform convergence of the sequence {fn}, 

where fn(x) = 1(1  x
2
)

n
. in (0, 2) 

Solution. We have  

  Mn = sup {|fn(x)  f(x)| : x ]0, 2} 

        = sup {(1x
2
)

n
: x ] 0, 2[} 

         
















 2,0]

n

1
xTaking

n

1
1

n

 

         
e

1
as n. 

Thus Mn cannot tend to zero as n. 

It follows  that the sequence is non-uniformly convergent. 

Also as n, x0 and consequently 0 is a point of non-uniform convergence.  

Example 1.2.14 Prove that the sequence {fn}, where  

  fn(x) = ,
nx1

x
2

 x real  

converges uniformly on any closed interval I.  

Solution. Here pointwise limit, 

  f(x) = 
n

lim  fn(x) = 
n

lim  
21

x

nx
= 0,       x in I 

  Mn = 
2

Ix
n

Ix nx1

x
Sup|)x(f)x(f|Sup
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Let                   y = 
21

x

nx
 

                      
dy

dx
=  

 

21

2
21

nx

nx





 (Check) 

For Maxima or Minima 

                      
dy

dx
= 0 

             

 

21

2
21

nx

nx





 = 0  

               x = 
1

n
 (Solving) 

                   
2

2

yd

d x
 = 

22 (3 )

32(1 )

nx nx

nx

 



 (Check) 

                  
2

0
2 21

 

y nd

d x x
n

  



  

Which shows that y is maximum when x = 
1

n
 and maximum value is 

                             

1 1

1
1max 1 2 21 .

n n
y

x nnn
n

  




 

Therefore,   

                              Mn = 
2

Ix
n

Ix nx1

x
Sup|)x(f)x(f|Sup






 = 
n2

1
  0    as   n   

Hence {fn} converges uniformly on I. 

Example 1.2.15  Prove that the sequence {fn}, where fn(x) = x
n1

 (1x) converges uniformly in 

the interval [0, 1]. 
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Solution. Here f(x) = 
n

lim  x
n1

 (1 x) = 0   x [0, 1]. 

Let  y = |fn(x)  f(x)| = x
n1

 (1x) 

Now y is maximum or minimum when  

  
2nx)1n(

dx

dy  (1  x)  x
n1

 = 0 

    x
n2

 [(n 1) (1x)x] = 0 

or   x = 0 or 
n

1n 
. 

A so 
2

2

1
when

d y n
ve x

dx n


    

 Mn = max y = 
en

n

n

n
11

1
1

1

1








 













 0 = 0 as n. 

Hence the sequence is uniformly convergent on [0, 1] by Mn-test. 

Example 1.2.16 Show that 0 is a point of non-uniform convergence of the sequence {fn}, where 

fn(x) = 1(1  x
2
)

n
. 

Solution. Here  

 f(x) = 









 2||01

00
)(lim

xwhen

xwhen
xfn

n
 

Suppose, if possible, that the sequence is uniformly convergent in a neighborhood ]0, k[ of 0 

where k is a number such that 0 < k < 2 . There exists therefore a positive integer m such that  

  |fm(x)  f(x)| < 
2
1 , taking  = 

2
1 , 

i.e., if   (1 x
2
)

m
 < 

2
1  for every x]0, k[. 

 Since 1-(1x
2
)

m
1 as x0, we  arrive at a contradiction. Hence 0 is point of non-

uniform convergence of the sequence.  

Example 1.2.17 Test for uniform convergence the series 






0n

nxxe  in the closed interval [0, 1]. 
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Solution. Here fn(x) = 
1

n
nxxe

n





 

           = 









 nxx

x

e

1
1

1e

xe
                           (Sum of first n terms of G.P.) 

Now f(x) = 















 1x0when

1e

xe

0xwhere0

)x(flim

x

x
n

n
 

We consider 0 < x  1. We have  

  Mn = sup {|fn(x)  f(x)| : x  [0, 1]} 

        = sup 











]1,0[x:
e)1e(

xe
nxx

x

 

         










]1,0[

n

1
xTaking

e)1e(

e.n/1
n/1

n/1

 

Now 
)1e(

en/1
lim

n/1

xn/1

n 
    









0

0
Form  

  = 
)n/1(e.e

e)n/1()n/1(ne/1
lim

2n/1

n/122n/1

n 




 

  = 
e

1

e

)10(

e

)1n/1(
lim
n








. 

Thus Mn does not tend zero as n.  

Hence the sequence is non-uniformly convergent by Mn-test. 

Here 0 is a point of non-uniform convergence.  

Example 1.2.18 The sequence {fn}, where, fn(x) = 
22xn1

nx


 is not uniformly convergent on any 

interval containing zero. 

Solution. Here  

  
n

lim fn(x) = 0,          x 
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 Now 
22xn1

nx


 attains the maximum value 

2

1
 at x = 

n

1
;

n

1
 tending to 0 as n. Let us 

take an interval [a, b] containing 0.  

Thus 

  Mn = 

[ , ]

Sup

x a b

|fn(x)  f(x)| 

           = 
[ , ]

Sup

x a b
22xn1

nx


 

        = 
2

1
, which does not tend to zero as n. 

Hence the sequence {fn} is not uniformly convergent in any interval containing the origin.  

Weierstrass’s M-test for Uniform Convergence of Series of Function 

Theorem 1.2.19 A series of functions fn will converge uniformly (and absolutely) on [a, b] if 

there exists a convergent series Mn of positive numbers such that for all x [a, b] 

 |fn(x)|  Mn, for all n  

Proof Let  > 0 be a positive number.  

Since Mn is convergent, therefore there exists a positive integer N such that  

  |Mn+1 + Mn+2 + …+ Mn+p| <     n  N, p  1  …(1.6) 

Hence for all x [a, b] and for all n  N, p  1, we have  

 |fn+1(x) + fn+2(x) + …+ fn+p(x)|  |fn+1(x)| + |fn+2(x)| + …+ |fn+p(x)| …(1.7) 

                  Mn+1 + Mn+2 + … + Mn+p                (Using 1.6) 

      <      …(1.8) 

(1.7) and (1.8) imply that fn is uniformly and absolutely convergent on [a, b]. 

Note: The converse of this theorem in no true, i.e., non-convergence of Mn does not imply 

anything as far as fn is concerned. 

Example 1.2.20 Test for uniform convergence the series.  

(i) 


,
)xn(

x
22

 (ii) 
 )nx1(n

x
2
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Solution. (i) Here un(x) = 
22 )xn(

x


. 

Now un(x) is maximum or minimum when 0
dx

)x(du
n   

or   (n + x
2
)

2
  4x

2
 (n + x

2
) = 0 

    3x
4
 + 2nx

2
  n

2
 = 0 

or   x
2
 = 

3

n
x.e.i

3

n
 . 

It can be seen that 
2

n

2

dx

)x(ud
 is ve when x = 

3

n
. 

Hence Max un(x) = 
n2/32

M
n16

33

3

n
n

3

n













. 

Therefore   

                     |un(x)|  Mn  n  N. 

But  Mn is convergent by p-series test. 

Hence the given series is uniformly convergent for all values of x by Weierstrass’s M test.  

(ii) Here un(x) is Maximum or minimum when 0
dx

)x(du
n  , i.e., 

  n(1 + nx
2
)  2n

2
x

2
 = 0   or   x =  1/(n). 

It can be easily shown that x = 
n

1
 makes un(x) a maximum.  

Hence Max un(x) = .M
n.2

1

)11(n

n/1
n2/3




 But  Mn is convergent by p-series test.  

 Hence the given series is uniformly convergent for all values of x by Weierstrass’s M-

test. 

 Example 1.2.21 Consider 


 1n
2 )nx1(n

x
, x R. 
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We assume that x is +ve, for if x is negative, we can change signs of all the terms. We have  

  fn(x) = 
)nx1(n

x
2

 

and   )x(fn  = 0 

implies nx
2
 = 1. Thus maximum value of fn(x) is 

2/3n2

1
 

Hence  fn(x)  
2/3n2

1
 

Since  2/3n

1
 is convergent, Weierstrass’s M-Test implies that 



 1n
2 )nx1(n

x
 is uniformly 

convergent for all xR. 

Example 1.2.22 Show that the series 


 1n
22 )xn(

x
, is uniformly convergent for all x in R.  

Solution. Here  
2 2

( )
( )

n

x
f x

n x



 

and so  ' ( )nf x  = 
42

222

)xn(

x2)xn(x2)xn(




 

Thus for maxima and minima, )x(fn  = 0 gives 

  x
4
 + x

2
 + 2nx

2
  4nx

2
  4x

4
 = 0 

     3x
4
  2nx

2
 + n

2
 = 0 

or   3x
4
 + 2nx

2
  n

2+
 = 0 

or  x
2
 = 

3

n
 or x = 

3

n
 

Also it can be easily seen that )x(fn  is ve at 
3

n
. Hence maximum value of fn(x) is 

2

3 3
.

16
nM

n


Since 
2

1
nM

n
  is convergent by p-test, it follows by Weierstrass’s M-Test that the given 

series is uniformly convergent.  
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Example1.2.23 The series 
 q2p nxn

x
 converges uniformly over any finite interval [a, b], for  

(i) p > 1, q  0  (ii) 0 < p  1, p + q > 2 

Solution. (i) When p > 1, q  0 

                        

2

2

2

2

2 0 [ , ]

0

1 1

q

p q p

p q p

p q p

x x a b

n x

n n x n

n n x n

x x

n n x n

 

 

 







or 

       Therefore     

 |fn(x)| = 
pq2p n

α

nxn

x



= Mn [ , ]x a b  

where    max {|a|, |b|}.  

The series Mn = ( / n
p
) converges for p > 1 by p-test. 

Hence by M-test, the given series converges uniformly over the interval [a, b]. 

(ii) When 0 < p  1, p + q > 2. 

            |fn(x)| attains the maximum value 
)qp(

2
1

n2

1



 at the point, where x = 2

p q

n


. 

 |fn(x)|  
)qp(

2
1

n2

1



= Mn 

The series Mn=
 )qp(

2
1

n2

1
 converges for p + q > 2 by p-test. Hence by M test, the given series 

converges uniformly over any finite interval [a, b]. 

Example1.2.24 Test for uniform convergence, the series  

 
2

1
...,

x1

x8

x1

x4

x1

x2
8

7

4

3

2









 x  

2

1
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Solution. The nth term fn(x) = 
n2

1n2n

x1

x2





 

  | fn(x)|  2
n
( 1n2)α   

where |x|    
2

1
. 

The series 2
n
( 1n2)α   converges, and hence by M-test the given series converges uniformly on 











2

1
,

2

1
. 

Abel’s Lemma 

Lemmac1.2.25 If v1, v2,…, vn be positive and decreasing, the sum  

  u1v1 + u2v2 +…+ unvn 

lies between A v1 and B v1, where A and B are the greatest and least of the quantities 

  u1, u1 + u2, u1 + u2 + u3,…, u1 + u2 +…+ un 

Proof. Write  

  Sn = u1 + u2 +…+ un 

Therefore 

  u1 = S1, u2 = S2  S1,…., un = Sn  Sn1 

Hence 

  


n

1i

uivi = u1 v1 + u1v2 +…+ unvn 

     = S1 v1 + (S2  S1) v2 + (S3  S2) v3 +…+ (Sn  Sn1) vn 

     = S1(v1  v2) + S2(v2 v3) +…+ Sn1 (vn1  vn) + Snvn 

     <  A[v1  v2 + v2  v3 + …+ vn1  vn + vn] 

Similarly, we can show that  

  


n

1i

iu vi > B v1 

Hence the result follows.  
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 Abel’s Test 

Theorem 1.2.26 If an(x) is a positive, monotonic decreasing function of n for each fixed value 

of x in the interval [a, b], and an(x) is bounded for all values of n and x , and if the series un(x) 

converges  uniformly  on [a, b], then   an(x)un(x) also converges uniformly. 

Proof. Since an(x) is bounded for all values of n and for x in [a, b], therefore there exists a 

number K > 0, independent of x and n, such that for all x[a, b], 

  0  an(x)  K,   (for n = 1, 2, 3,…)    …(1.9) 

 Again, since un(x) converges uniformly on [a, b], therefore for any  > 0, we can find 

and integer N such that  

  ,
K

ε
)x(u

pn

1nr

r 




  n  N, p  1    …(1.10) 

Hence using Abel’s lemma, we get 

  ( ) ( ) ( ) max ( )
1 1,2,...,1 1

n p n q
a x u x a x u x
r r n rq pr n r n

 
 

    

 

               < K 
K

ε
 = ,  for n  N, p  1, a  x  b  

    an(x) un(x) is uniformly convergent on [a, b]. 

Example 1.2.27 Show that the series 
n

)1( n
 |x|

n
 is uniformly convergent in  1  x  1.  

Solution. Since |x|
n
 is positive, monotonic decreasing and bounded for 1  x  1, and the series 




n

)1( n

 is uniformly convergent being alternating series, therefore by Abel’s test the series 




n

)1( n

 |x|
n
 is also convergent in 1  x  1. 

Dirichlet’s Test 

Theorem 1.2.28 If an(x) is a monotonic function of n for each fixed value of x in [a, b], and 

an(x)0  uniformly  for a  x  b, and if there is a number K > 0, independent of x and n, such 

that for all values of x in [a, b], 

  


n

1r

r )x(u   K,       n 
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then the series  an(x) un(x) converges  uniformly  on [a, b]. 

Proof.  Since an(x) tends uniformly to zero, therefore for any  > 0, there exists an integer N 

(independent of x) such that for all x [a, b] 

  |an(x)| < /4K,     for all n  N 

 Let Sn(x) = 


n

1r

r ),x(u  for all x [a, b], and for all n,  

    ( ) ( )

1

n p
a x u x
r r

r n



 

 = an+1(x) {Sn+1 Sn} + an+2(x) {Sn+2  Sn+1} +… 

    + an+p(x) {Sn+p  Sn+p1} 

            =  an+1(x) Sn + {an+1(x)  an+2(x)} Sn+1 + … 

    + {an+p1(x)  an+p(x)} Sn+p1 + an+p(x) Sn+p 

            = 
1
{ ( )

1

n p
a x
r

r n

 

 

  ar+1(x)} Sr(x)  an+1(x) Sn(x) 

    + an+p(x) Sn+p(x) 

 









1

11

)(|)()(
pn

nr

r

pn

nr

rr xaxuxa   ar+1(x)|  |Sr(x)| + |an+1(x)| |Sn(x)| +  

     + |an+p(x)| |Sn+p(x)|  

Making use of the monotonicity of an(x) 

  




1

1

)(|
pn

nr

r xa   ar+1(x)| = |an+1(x)  an+p(x)|, for a  x  b,  

and the relation |Sn(x)|  K, for all x[a, b] and for all n = 1, 2, 3,…,  we deduce that for all 

x[a, b] and all p  1, n  N 

  




pn

nr

rr xuxa
1

)()( K|an+1(x)  an+p(x)| + 
K4

ε
2K 

        < K 
2

ε

K2

ε
  = . 

Therefore by Cauchy’s criterion, the series an(x)un(x) converges uniformly on [a, b]. 
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Example 1.2.29 Show that the series 
)xn(

)1(
2

1n



 

 is uniformly convergence for all values of x.  

Solution. Let un = (1)
n1

, vn(x)
2xn

1


 

Since fn(x) = 



n

1r

r
0u  or 1 according as n is even or odd, fn(x) is bounded for all n.  

Also vn(x) is a positive monotonic decreasing sequence, converging to zero for all real values of 

x.  

Hence by Dirichlets test, the given series is uniformly convergent for all real values of x. 

Example 1.2.30 Prove that the series (1)
n
 

2

2

n

nx 
, converges uniformly in every bounded 

interval, but does not converge absolutely for any value of x.  

Solution. Let the bounded interval be [a, b], so that  a number K such that, for all x in [a, b], 

|x| < K.  

 Let us take un = (1)
n
, which oscillates finitely, and  

  an = 
2

2

2

2

n

nK

n

nx 



 

Clearly an is a positive, monotonic decreasing function of n for each x in [a, b], and tends to 

zero uniformly for a  x  b. 

 Hence by Dirchlet’s test, the series (1)
n

2

2

n

nx 
 converges uniformly on [a, b].  

 Again  






n

1
~

n

nx

n

nx
)1(

2

2

2

2
n , which diverges. Hence the given series is not 

absolutely convergent for any value of x.  

   

Example 1.2.31 Prove that if  is any fixed positive number less than unity, the series 
1n

x n

 

is uniformly convergent in [, ]. 

Solution. Let un(x) = x
n
, vn = 

1n

1
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  |x|   < 1, we have  

  |fn(x)| = |x + x
2
 + …+ x

n
| 

   |x| + |x|
2
 +…+ |x|

n
 

    + 
2
 +…+ 

n
 = 

δ1

δ

δ1

)δ1(δ n







. 

Also {vn} is a monotonic decreasing sequence converging to zero.  

Hence the given series is uniformly convergent by Dirichlet’s test. 

Example 1.2.32 Show that the series 





1n

1n)1(  x
n
 converges uniformly in 0  x  k < 1.  

Solution. Let un = (1)
n1

, vn(x) = x
n
. 

Since fn(x) = 



n

1n

r
0u  or 1 according as n is even or odd, fn(x) is bounded for all n. Also 

{vn(x)} is a positive monotonic decreasing sequence, converging to zero for all values of x in 0 

 x  k < 1. Hence by Dirichlet’s test, the given series is uniformly convergent in 0  x  k < 1.  

Example 1.2.33 Prove that the series  pn

ncos
converges uniformly for all values of p > 0 in 

an interval [, 2  [, where 0 <  < . 

Solution. When 0 < p  1, the series converges uniformly in any interval [, 2  ],  > 0. 

Take  an = (1/n
p
) and un = cos n  in Dirchlet’s test.  

 Now (1/n
p
) is positive monotonic decreasing and tending uniformly to zero for           0 < 

p  1, and  

          



n

t

n

t

t tu
11

cos   = |cos  + cos 2 + …+ cos n| 

            = 
)2/θsin(

θ)2/nsin(θ)2/)1ncos(( 
  cosec (/2),   n, for  [, 2  ] 

Now by Dirchlet test, the series (cos n/n
p
)  converges uniformly on [, 2  ] where 0 <  

< . When p > 1, Weierstrass’s M-test,  the series converges uniformly for all real values of . 

1.3 Check Your Progress 

Q.1. Define point-wise and uniform convergence, which one implies the other. 
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Q.2. Fill in the blanks of the following results with your understanding: 

a) The limit of integrals is not equal to the integral of the limit.  

   Consider the sequence {fn}, where  

  fn(x) = nx(1  x
2
)

n
, 0  x  1, n = 1, 2, 3,… 

For  0 < x  1, 
n

lim fn(x) = 0 

At x = 0, each fn(0) = 0, so that 
n

lim fn(0) = …………… 

Thus the limit function f(x) = 
n

lim fn(x) = 0, for 0  x  1 

 
1

0

)x(f dx = 0 

Again,  

  
1 1

2

0 0

( ) (1 )n

nf x dx nx x dx    …………….. 

 

so that  

  
n

lim

1

0

( )nf x dx
  

 
  
 …………… 

Thus,  

  
n

lim   



















1

0

1

0

n
n

1

0

n }f{limdxfdxf dx 

Thus, the limit of integral is not equal to integral of limit. 

b) Show that the sequence {fn}, where  

  fn(x) = 
2nxnxe  ,  x  0 is not uniformly convergent on [0, k], k > 0 

Solution. Here 

                                 f(x) = 
n

lim fn(x) = 
n

lim  
2nxnxe   
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                                                           = 
n

lim  
2

nx

nxe

    Form
 
  

 

                                                            = 
n

lim  
2

2

x

nx
x e

 = ………….,       x  0 

Further 

           Mn = 
]k,0[x

Sup


 |fn(x)  f(x)| = |
2nxnxe   0 | = |y (say) | 

Now, we have  

                                  y = 
2nxnxe   

Then                       
dy

dx
=  …………. (Evaluate) 

For Maxima or Minima 

                               
dy

dx
= 0 

               
2 2(1 2 )nxne nx   = 0  

                     x = 
1

2n
 (Solving) 

                   
2

2

yd

d x
 = ………………(Evaluate) 

                  
2

1
2

2 4
0

2 1

2

2
 

y nd

xx

n

e
nd


  



  

Which shows that y is maximum when x = 
1

2n
 and maximum value is 

                       
1 1

. .1max 22
2

nn ey
x nn

n

 


……………… 

Therefore,   
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                         Mn = 
2

| ( ) ( ) | nx

n
x I x I

Sup f x f x Sup nxe

 

   = 

1
2

2

n

e

 
 
 

       as   n   

Therefore the sequence is not uniformly convergent on [0, k].  

1.4 Summary of Lesson 

The chapter starts with definition of Point-wise convergence and Uniform convergence. 

It is concluded that Uniform convergence Point-wise convergence, but the converse it not 

true. Also the Point-wise and Uniform limits are same for any sequence and series of functions. 

The Uniform convergence of several examples is checked by definition method, followed by 

Mn-test to check convergence of sequence of functions. Further Cauchy criterion for Uniform 

convergence is proved. Next, the Weierstrass M-test, Abel’s test and Dirichlet’s test are proved 

with several illustrative examples. 

1.5 Key Words 

1. Sequence and Series of real numbers. 

2. Cauchy Criterion for convergence. 

3. p-test for convergence of series of real numbers. 

4. Alternating series test. 

 

1.6 Self-Assessment Test 

Q.1 Show by definition method that the sequences {nx(1 – x
2
)

n
} and  

       {n
2
x (1 – x

2
)

n
} are not Uniformly convergent on [0, 1]. 

Q.2 Show that the series: (1 – x
2
) + x(1 – x

2
) + + x

2
(1 – x

2
)+ ….. is not Uniformly   

       convergent on [0, 1]. 

Q.3 Use Mn-test to check the Uniform convergence of the following sequences: 

         
sin

( ) ,0 2
nx

i x
n


 

  
 

 

          ( ) ,0
x

ii x k
n x

 
  

 
 

Q.4 Use Weierstrass’s M-test to prove that the series xn is uniform convergent     

       in  1 , , 0    . 

Q.5 Use Abel’s or Dirichlets’s tests to check the uniform convergence of series: 

        
log

{ } , 1 1
x

n
i x

n
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1

1
{ } sin 1

n

n

x
ii

nn





  
 

 
 , over any closed and bounded subset of R. 

 

1.7 Answers to check your progress  
A.1 The reader is suggested to study definition at beginning of chapter. 

     A.2 The following are answer in series to the blanks in  

     2(a)  0, 
2 2

n

n 
, 

1

2
. 

     2(b) 0, 
2 2(1 2 )nxne nx  , -2

2 2(3 2 )nxxne nx  , 

1
2

2

n

e
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MAL-512: M. Sc. Mathematics (Real Analysis) 

Lesson No. 2                                                                Written by Dr. Vizender Singh 

Lesson: Sequences and Series of Functions -II 

Structure: 
2.0   Learning Objectives 

2.1   Introduction  

2.2   Sequences and Series of Functions  

2.3   Check Your Progress 

2.4   Summary 

2.5   Keywords 

2.6   Self-Assessment Test  

2.7   Answers to check your progress  

2.8   References/ Suggested Readings 

 

2.0 Learning Objective 

 

 The learning objectives of this lesson are to study the use of continuity, 

differentiability and inerrability in checking the uniform convergence behaviour if 

sequence (series). 

 To study under what condition term by term integration and differentiation is possible 

in series of function. 

 To study necessary and sufficient condition for a sequence (series) of continuous 

functions to be uniform convergent. 

 To study that every continuous function can be “uniformly approximated” by 

polynomials to within any degree of accuracy. 

 

2.1 Introduction 
 

So far in earlier graduate classes, we have considered, most exclusively, sequence and series 

whose terms are real numbers. It was only in particular case that the terms depend upon 

variable. In this lesson, we shall consider sequence and series whose terms depends upon 
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variable, i.e., those whose terms are real valued functions defined on interval as domain. The 

sequences and series are denoted by {fn} and fn respectively.    

 

2.2  Uniform Convergence and Continuity, Differentiability and    

      Integrablity. 

Theorem 2.2.1 Let  n{f }  be a sequence of continuous function on [a, b] and if fn
 
f uniformly 

on [a, b], then prove that f is continuous on [a, b]. Is the converse true ? Justify your answer. 

Proof. Let ε 0 be given. 

Since n{f } is uniformly convergent on [a, b], by definition of uniform convergence of sequence 

of functions,   a positive integer m such that 

                                 | fn(x)
 
–f(x) | < 

ε

3
  n m and x [a,b]                                  …(1) 

Let t be any arbitrary point of [a, b], then from (1), in particular, we have 

                                 | fn(t)
 
–f(t) | < 

ε

3
  n m                                                      …(2) 

Since fn is continuous on [a, b] for each nN   fn is continuous at t  [a, b], therefore by 

definition of continuity, then  δ > 0 such that 

                                  |fn(x)
 
–fn(t) | < 

ε

3
 whenever |x – t| < δ                                  …(3) 

Now,  

                                  | f(x)
 
–f(t) | = | f(x)

 
– fn(x)

  
+ fn(x)

 
- fn(t)

 
+ fn(t)

 
- f(t) | 

                                                      | f(x)
 
– fn(x) |

  
+ |fn(x)

 
- fn(t)

  
| + |fn(t)

 
- f(t) | 

                                                     < 
ε

3
 + 

ε

3
 +

ε

3
 = ε             whenever |x – t| < δ  

 f is continuous at t but t [a, b] is arbitrary. Therefore f is continuous on [a, b]. 

The converse of the theorem is not true. For example consider 

                                   fn(x) = 
2 2

nx
, x R

1 + n x
 , 
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then                            f(x) = 
n
lim
 

  fn(x)
 
=  

n
lim
 

  
2

2

x

0, x R 
1

+ x
n

n                               

Here, each fn(x) being quotient of two continuous function, hence continuous and the limiting 

function f(x) = 0, is also continuous on R. 

By example, 2.1.8 or 1.2.18 of chapter 1, fn(x) = 
2 2

nx
, x R

1 + n x
  in not uniformly convergent 

in any interval containing 0. 

Theorem 2.2.2 If the series 
nf converges uniformly to f in closed interval [a, b] and each of 

its term is continuous at some point x0 of interval, the prove that the sum function f is also 

continuous at x0. 

Proof. Let ε 0 be given. 

Since the series 
nf converges uniformly to f in closed interval [a, b], therefore by definition 

of uniform convergence of a series of function,   a positive integer m such that 

                            | 
n

r

r =1

f (x) –f(x) | < 
ε

3
  n m and x [a,b]                                  …(1) 

Let t be any arbitrary point of [a, b], then from (1), in particular, we have for n = m 

                             | 
m

r

r =1

f (t) –f(t) | < 
ε

3
                                                                     …(2) 

Since fn is continuous on [a, b] for each nN   Sum of finite number of functions, 
n

r

r = 1

f is also 

continuous at t [a, b], therefore by definition of continuity, then  δ > 0 such that 

                        |
m

r

r =1

f (x) –
m

r

r =1

f (t) | < 
ε

3
 whenever |x – t| < δ                                  …(3) 

Now,  

                          | f(x)
 
–f(t) | = | f(x)

 
– 

m

r

r =1

f (x) + 
m

r

r =1

f (x) - 
m

r

r =1

f (t) + 
m

r

r =1

f (t) - f(t) | 
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                                             < 
ε

3
 + 

ε

3
 +

ε

3
 = ε             whenever |x – t| < δ  

 f is continuous at t but t [a, b] is arbitrary. Therefore f is continuous on [a, b]. 

Note: If the limit (sum) function of sequence (series) of continuous functions is not continuous 

on interval, the convergence can’t be uniform. This conclusion is important to decide that the 

limit function is not uniform. 

Example 2.2.3 Show that the series 

                          
 

4 4
4

24
4

x x
x ....

1 x 1 x
  

 
 

is not uniformly convergent on [0, 1]. 

Solution. The terms of series are being quotient of continuous functions, so each term is 

continuous on [0, 1]. 

Here                   Sn(x) = 
   

4 4 4
4

2 14
4 4

x x x
x ....

1 x 1 x 1 x
n

   
  

 

                                    = (1 + x
4
) -  

 
1

4

1

1 x
n


                          [By sum of G.P. Series] 

Therefore,           S(x) = 
n
lim
 

[(1 + x
4
) -  

 
1

4

1

1 x
n


] 

                                   = 
41+x , if 0 < x 1

0, if x = 0

 



 

which is discontinuous at x = 0 [0, 1]. Hence the given series is not uniformly convergent on 

[0, 1]. 

Example 2.2.4 Show that the series, n

1

(1 - x).x
n





 is not uniformly convergent on [0,1]. 

Solution. The terms of the series are continuous functions and converges point-wise to S(x), 

where 

                       S(x) =  
1, if 0 x 1

0, if x = 1
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which is discontinuous at x = 1 [0, 1]. Hence the given series is not uniformly convergent on 

[0, 1]. 

Example 2.2.5 Test for uniform convergence and continuity of sequence {fn} where 

                          fn(x) = x
n
, 0   x   1. 

Solution. Here, fn(x) = x
n
, 0   x   1 

The limit function f is given by 

                          f(x) = 
n
lim
 

  fn(x)
 
=  

n
lim
 

  nx 0, for 0 x <1   

but when x = 1, the sequence converges to 1, therefore 

                          S(x) =  
1, if 0 x 1

0, if x = 1

 



 

Clearly, f is discontinuous at x = 1 and hence f is discontinuous on [0, 1]. 

Also, fn(x) = x
n
, 0   x   1 is being polynomial function so continuous on [0, 1]  n. 

Since, {fn} is sequence of continuous functions and its limit function f is discontinuous on [0, 

1]. Therefore the sequence {fn} is not uniformly convergent on [0, 1]. 

There is special class of sequence (series) for which uniform convergent is equivalent to the 

continuity of the sequence (series). In this concern, we give following theorem due to Italian 

Mathematician. 

Dini’s Theorem  

Theorem 2.2.6 If a sequence {fn} of continuous functions defined on [a, b] is monotonic 

increasing and converges point-wise to a continuous function f, the convergence is uniform on 

[a, b]. 

Proof. Since the sequence {fn} is monotonic increasing and converges point-wise to f on [a, b], 

therefore by definition of point-wise convergence, for given ε 0 and each x in [a, b],   a 

positive integer N such that 

                                          0   f(x) - fn(x) < ε                                                         …(1) 

 Let Rn(x) = f(x) - fn(x), n = 1, 2, 3 … 

Then, fn+1(x)   fn(x) n N   - fn+1(x)   - fn(x)  n N  

  f(x) - fn+1(x)   f(x) - fn(x)  n N 

  Rn(x)   Rn+1(x)  n N                                                                                    …(2) 
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  the sequence {Rn(x)} is monotonic decreasing and bounded below by zero.  

Thus, the sequence {Rn(x)} converges point-wise to 0 on [a, b]. Since every monotonic 

decreasing sequence which is bounded below converges to infimum. 

However, if (1) and (2) hold for all x[a, b] and independent of N, then the convergence is 

uniform. 

Suppose, if possible that, for certain 0ε > 0, no such N independent of x exists. Then for each n 

= 1, 2, …, there is xn [a, b] such that 

                     Rn(xn)   0ε                                                                                          …(3) 

The sequence {xn} of points in [a, b] is bounded, therefore by Bolzano Weierstrass’s theorem, 

the sequence has at least one limit point say   in [a, b]. 

  a sub-sequence say {
knx }of {xn}such that 

knx   as k   . 

Now,  
k
lim
 

Rm(
knx ) = Rm(

k
lim
  knx ) = Rm( )  

                           [Rn(x) being difference of two continuous functions is continuous] 

But for every m and any sufficiently large k, we have nk   k > m and from (2) and (3), we get  

                      Rm(
knx )   Rnk (

knx ) 0ε  

                 
k
lim
 

Rm(
knx ) = Rm( ) 0ε for any m,  

which is contradiction to
k
lim
 

 Rm( ) = 0. Hence the theorem. 

Theorem 2.2.7 If the sum function of a series
nf , with non-negative continuous terms 

defined on the interval [a, b] is continuous on [a, b], then the series is uniformly convergent on 

the interval. 

Proof. The partial sums, Sn(x) = 
n

r

r =1

f (x) , with non-negative continuous terms fr, form a non-

negative decreasing sequence of continuous functions, converges point-wise to continuous 

function f. Therefore by previous theorem, the sequence converges uniformly and thus the 

series is also uniformly convergent. 

Uniform Convergence and Integration 
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Theorem 2.2.8 Let α be monotonically increasing on [a, b]. Suppose fn R( α ) on [a, b], for  n 

= 1, 2, 3, … and suppose fn   f uniformly on [a, b]. Then f R( α ) on [a, b] and 
b b

n
n

a a

f(x)d(α(x))= lim f d(α(x))
  . 

Proof. Let ε 0 be given. 

Let us choose η 0 such that 

                                
ε

η[α(b) - α(a)] < 
3

                                                                   …(1) 

Since fn   f uniformly on [a, b], therefore by definition of uniform convergence,   positive 

integer m such that 

                                | fm(x)
 
–f(x) | < η   x [a,b]                                                  …(2) 

Further, as fm  R( α ) on [a, b],   a partition P = { a = x0, x1, …., xn = b} of [a, b] such that 

                                 U(P, fm, α ) - L(P, fm, α ) < 
ε

3
                                                …(3) 

From (2), on solving, we have 

                        fm - η  < f(x) < fm + η                                                                       …(4) 

From (4), we get 

                        fm - η  < f(x) or fm < f(x) + η  

                   
n

m r r

r =1

(f ) .Δα < 
n

r r

r =1

f .Δα  + η[α(b) - α(a)]  

                    L(P, fm, α ) < L(P, f, α )  + 
ε

3
                                    [Using (1)]    …(5) 

Similarly, again from (4), we have 

                        f(x) < fm + η  

                   U(P, f, α ) < U(P, fm, α )  + 
ε

3
                                    [Using (1)]    …(6) 

Adding (5) and (6), we obtain 

                       U(P, f, α ) + L(P, fm, α ) < U(P, fm, α )  + 
ε

3
+ L(P, f, α )  + 

ε

3
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Or 

                        U(P, f, α ) - L(P, f, α ) < U(P, fm, α )  - L(P, fm, α )  + 
2ε

3
 

                                                            <  
ε

3
 + 

2ε

3
 = ε                       [Using (3)] 

                   U(P, f, α ) - L(P, f, α ) < ε  

Therefore, f R( α ) on [a, b]. 

Now we shall prove second result. 

Since {fn} converges uniformly to f, therefore given ε > 0,   a positive integer m such that 

                                 | fn(x)
 
–f(x) | < 

ε

3
  n m and x [a,b]                                  …(7) 

 Then  n m and x [a,b]  , we have 

                      |
b b

n

a a

f(x)d(α(x)) - f d(α(x))  | = |
b

n

a

(f f ) dα  | 

                                                                   
b

n

a

|(f f ) | dα    
b

a

. dα   

                                                                   ε [α(b) - α(a)]< ε  

  {
b

n

a

f d(α(x)) } converges uniformly to 
b

a

f(x)d(α(x)) on [a, b]. 

Hence 
b b

n
n

a a

f(x)d(α(x)) = lim f d(α(x))
  . 

Term by Term Integration 

Theorem 2.2.9 If the series 
nf converges uniformly to f on [a, b] and each of its term is 

integrable on [a, b], the f is integrable and the series 
b

n

a

f dα
 
 
 

   converges uniformly to 
b

a

f dα

on [a, b], i.e., 
b b

n n

n =1 n =1a a

f (x) dα= f (x) dα
 

    

Or 
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Prove that a uniformly convergent series of function may be integrated term by term. 

Proof. Let Sn(x) = f1(x) + f2(x) + … + fn(x) 

Since each fn is integrable, therefore their sum is also integrable 

  fn R( α ) 

Since, 
nf converges uniformly to f on [a, b], 

{Sn(x)} converges uniformly to f on [a, b]. 

By definition of uniformly convergent sequence of functions, given ε > 0,   a positive integer 

m such that 

                     | Sn(x)
 
– f(x) | < 

ε

2(b - a)
  n m and x [a,b]                                                       …(1) 

From (1), on solving, we get 

                      Sn(x) - 
ε

2(b - a)
< f(x) < Sn(x) + 

ε

2(b - a)
                                                             …(2) 

From (2), we have 

                      f(x) < Sn(x) + 
ε

2(b - a)
 

                  
b b ε

f(x) dα < S (x) dα +
n 2

a a
    

Or                 
b b ε

f(x) dα < S (x) dα +
n 2

a a
                  [Sn R( α )]                                                  …(3) 

Similarly, from (1), we get 

                        
b ε

f(x) dα > S (x) dα -
n 2

a a

b

                  [Sn R( α )]                                                …(4) 

(3) – (4)   

                    
b

f(x) dα

a
  - 

b
f(x) dα

a
  <  

b
S (x) dα

n
a
 -

b ε
S (x) dα +

n 2
a
  = ε  
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b

f(x) dα

a
  - f(x) dα

a

b

  <  ε  

But ε is arbitrary small, 

                    
b

f(x) dα

a
  - 

b
f(x) dα

a
  = 0 

                
b

f(x) dα

a
  = 

b
f(x) dα

a
   

  f R( α ) on [a, b]. 

Now, from (3) and (4),  n   m 

                           
b ε

S (x) dα -
n 2

a
  <

b b ε
f(x) dα < S (x) dα +

n 2
a a
    or 

                       
ε

-
2

 <
b b ε

f(x) dα S (x) dα <
n 2

a a

   

                        |
b b

f(x) dα S (x) dα
n

a a

  | <
ε

2
  or 

                           
b b

n
n

a a

f(x)d(α(x)) = lim d(α(x))S
  , i.e., 

                          
n
lim


b

r

1 a

f d(α(x))
r





 = 
b

1a

f (x) d(α(x))n

n





 
 
 
  

Note: The converse of the above is neither asserted nor true, i.e., a series or a sequence may 

converge to an integrable limit without being uniformly convergent.  

Uniform Convergence and Differentiation 

Theorem 2.2.10 Let {fn} be a sequence of differentiable functions on [a, b] such that it 

converges at least one point x0 [a, b]. If the sequence of differentials  nf    converges 

uniformly to G on [a, b], then the given sequence {fn} converges uniformly on [a, b] to f and 

 f  = G. 
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Proof. Let ε 0 be given. 

By the convergent of {fn(x0)} and uniform convergence of  nf  on [a, b],   a positive integer N 

such that 

                 |fn+p(x0)
 
– fn(x0) | < 

ε

2
  n N, p 1and x [a,b]                                   …(1)        

                 | n+pf  (x)
 
– nf  (x) | < 

ε

2(b - a)
  n N, p 1and x [a,b]                         …(2) 

Applying Lagrange’s Mean Value theorem to the function (fn+p – f) for any two points x and t of 

[a, b], we get for x < ξ < t, for all n   N, p   1 

                   | fn+p(x)
 
– fn(x) - fn+p(t)

 
+ fn(t) | = |x - t| | n+pf  ( ξ )

 
– nf  ( ξ )| 

                                                                    < |x - t| 
ε

2(b - a)
                                   …(3) 

                                                                    < 
ε

2
                                                   …(3A) 

and 

                     | fn+p(x)
 
– fn(x) |   | fn+p(x)

 
– fn(x) - fn+p(x0)

 
+ fn(x0) | + |fn+p(x0)

 
– fn(x0) | 

                                                < 
ε

2
 + 

ε

2
= ε                                        [using (1) and 3A] 

  The sequence {fn} uniformly converges on [a, b]. 

Let it converges to f, say 

For a fixed x in [a, b] and t[a, b], t  x, let us define 

                       n n
n

f (t) - f (x)
(t) = , n=1,2,3,...

t - x
                                                         …(4) 

                       
f(t) - f(x)

(t) = , n=1,2,3,...
t - x

                                                              …(5) 

Sine each fn is differentiable, therefore for each n 

                       
n
lim


n (t) = nf (t)                                                                               …(6) 

Therefore, 
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n+p n+p n n

n+p n n+p n

1
| (t) (t) | |f (t) - f (x) - f (t) - f (x)|

| t - x |

1
                        = |{f (t) - f (t)}- {f (x)  - f (x)}|

| t - x |

ε
                        < , , 1 [using(3)]

2(b - a)

n p n

n N p

   

  

 

So that { n (t) } converges uniformly on [a, b], for t  x. 

Since {fn} also converges uniformly to f, therefore from (4) 

                          
n
lim


n n
n

f (t) - f (x)
(t) = = 

t - x
  

f(t) - f(x)

t - x
 = (t)     

Thus { n (t) } converges uniformly to (t) on [a, b], for t in [a, b] with t  x. 

                            
t
lim

x
 (t) =  

n
lim


nf (t)   = G(x)  

                        
t
lim

x
 (t)  exist  

Therefore by (5), we have f is differentiable and  
t
lim

x
 (t) =  f (t)  

Hence,                    

                           f (x) = G(x) =  
n
lim


nf (x).                    

Theorem 2.2.11 If each fn is differentiable on [a, b] and 
nf (x)  converges uniformly on [a, b]. 

Also if f (x)n converges for some x0 in [a, b], then f (x)n converges uniformly on [a, b] to 

sum function f(x) and  

                                          
nf (x) f (x) on [a, b].   

Proof. Let Sn(x) = f1(x) + f2(x) + … + fn(x) on [a, b]. 

Since each f (x)n  converges as x0 in [a, b] {Sn(x)} also converges at as x0 in [a, b]. 

Further proceed as in previous theorem. 

Example 2.2.12 Show that the sequence {fn} where 

                           fn(x) = 
2

x

1 + nx
 

converges uniformly to function f on [0, 1] and the equation  
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                           f (x) = 
n
lim


nf (x).  

Is true if x  0 and false if x = 0. Why so? 

Solution. By example 1.2.14 of (lesson1), the sequence {fn(x)} is uniformly convergent on [0, 

1].  

Further since, f(x) = 0 

              f (x)  = 0 x [0,1]   

when x  0, 

                    

2 2

n 2 2 2 2

2

n 2 2n n

2

2 2n

(1+ n x )(1) - x.2nx (1 - n x )
f (x) = =

(1+ n x ) (1 + n x )

(1- n x )
lim f (x) lim Form

(1+ n x )

- x
lim = 0 = f (x)

2(1+ n x )x

 





 
    



 

so that if x  0, the formula f (x) = 
n
lim


nf (x)  is true. 

At x = 0, 

                     

n n
n

h 0

2

h 0

2h 0

f (0 + h) - f (0)
f (0) = lim

h

h
 
1lim 0

h

1
lim 1

1

nh

nh









 

 


 

So that 
n
lim


nf (0) = 1  f (0)  

Hence, at x = 0 the formula f (x) = 
n
lim


nf (x)  is false. 

This is because the sequence { nf (x) } is not uniformly convergent in any interval containing 

zero. 

Example 2.2.13 Show that the series for which 

                          n 2 2

nx
S (x) = , 0 x 1

1 + n x
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cannot be differentiated term by term at x = 0. 

Solution. Here, n 2 2

nx
S (x) = , 0 x 1

1 + n x
   

                       f(x) = 
n
lim


nS (x) = 
n
lim


2 2

nx

1 + n x
= 0 for 0 x 1   

Therefore, f (0) = 0 

Also           

n n
n

h 0

2 2h 0

2 2h 0

S (0 + h) - S (0)
S (0) = lim

h

 n h
lim 0

1+ n h

 n h
lim = n

1+ n h









 



     

                
n

n
lim S (0)


    

Thus             f (0)   
n

n
lim S (0)


  

Hence the given series cannot be differentiated term by term. 

Example 2.2.14 Show that the function represented by 
3

n =1

sin nx

n



  is differentiable for every x 

and its derivative is 
2

n =1

cos nx
.

n



  

Solution. Here fn(x) = 
3

sin nx

n
 

                     nf (x)  = 
2

cos nx.n

n
= 

2

cos nx

n
 

                     n 2
n =1 n =1

cos nx
f (x) =

n

 

   

Since                
2 2 2

n =1

cos nx 1 1
x and is convergent by p-test

n n n



   , 
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Therefore by Weierstrass’s M-test, the series n

n =1

f (x)


 is uniformly convergent foe all x and 

hence 
n =1

f (x)n



 can be differentiated term by term. 

                           n

n =1 n =1

f (x) f (x)n

  
 

 
   

                            
3 2

n =1 n =1

sin nx cos nx

n n

  
 

 
  . 

Example 2.2.15 Show that the sequence {fn}, where                                                     

                          

2

2

n

1
 n x, if 0 x

n

1 2
f (x) = -n x+2n, if x

n n

2
 0, if x 1

n


 




 



 


 

is not uniformly convergent [0, 1]. 

Proof. Here 

2

2

n

1
 n x, if 0 x

n

1 2
f (x) = -n x+2n, if x

n n

2
 0, if x 1

n


 




 



 


 

The sequence {fn} converges to f, where f(x) = 0 [0,1].x   

Each function fn anf f are continuous on [0, 1]. 

Also 

           

1 2

1 1n n
2 2

n

1 20 0

n n

f dx = n x dx + (-n x + 2 n) dx + 0 dx 1     

But     
1

0

f (x) dx 0  
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n
lim


1 1

n

0 0

f dx f (x) dx  . 

Example 2.2.16 Show that the series 

                            
2 2 2 2

n =1

n x (n -1) x
-

1 + n x 1 + (n -1) x

  
 
 

  

can be integrated term by term on [0, 1], although it is not uniformly convergent on [0, 1]. 

Solution. Here 

                       fn(x) = 
2 2 2 2

n x (n -1) x
-

1 + n x 1 + (n -1) x
 

                    f1(x) = 
2

x
- 0

1 + x
 

                        f2(x) = 
2 2 2

2 x x
-

1 + 2 x 1 + x
 

                        f3(x) = 
2 2 2 2

3 x 2 x
-

1 + 3 x 1 + 2 x
 

                        …………………………………… 

                        fn(x) = 
2 2 2 2

n x (n -1) x
-

1 + n x 1 + (n -1) x
 

Therefore,       Sn(x) = 
2 2

n x

1 + n x
 

                    f(x) = 
n
lim


Sn(x) = 
n
lim


2 2

n x

1 + n x
= 0 [0,1].x   

Clearly, x = 0 is the point of non-uniform convergence of the series. 

Now, 
1

0

f (x) dx 0 and 
1 1

2

n 2 2

0 0

n x 1
S (x) dx = dx= log (1 + n )

1 + n x 2n   

     
1

2

n
n n

0

1
lim S (x) dx = lim . log (1 + n ) 0 (Check)

2n 
  

Since  
1 1

n n
n n

0 0

lim S (x) dx = lim S (x) dx
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Therefore, the series is integrated term by term on [0, 1], although it is not uniformly 

convergent on [0, 1]. 

The Weierstrass Approximation Theorem  

Theorem 2.2.17 Let f be a real continuous function defined on a closed interval [a, b] then there 

exists a sequence of real polynomials {Pn} such that
n

lim Pn(x) = f(x), uniformly on [a, b]. 

Proof.   If a = b, we take Pn(x) to be a constant polynomial, defined by Pn(x) = f(a), for all n and 

the conclusion follows .  

So let a < b.  

 The linear transformation x = (x  a)/(b  a) is a continuous mapping of   [a, b] onto [0, 

1]. So, we  take a = 0, b = 1.  

   The binomial coefficient 








k

n
is defined by  

  
)!kn(!k

!n

k

n











 , for positive integers n and k when 0  k  n, 

 The Bernstein polynomials Bn  associated with f is defined as  

  Bn(x) = 









n

0k

knk n),n/k(f)x1(x
k

n
= 1, 2, 3,…, and x[0, 1] 

By binomial theorem,  

  









n

0k k

n
x

k
(1  x)

nk
 = [x + (1  x)]

n
 = 1   …(1) 

Differentiating with respect to x, we get  

  









n

0k k

n
[k x

k1
(1  x)

n[k
  (n k) x

k
(1  x)

nk1
] = 0 

or  

  


 






n

0k

1kn1k 0)nxk()x1(x
k

n
 

Now multiply by x(1  x) , we take  

  









n

0k

kx
k

n
(1 x)

nk
(k  nx) = 0    …(2) 
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Differentiating with respect to x, we get  

  









n

0k k

n
[ nx

k
(1  x)

nk
 + x

k1
(1  x)

nk1
(k  nx)

2
] = 0 

Using (1), we have 

  









n

0k k

n
x

k1
(1  x)

nk1
(k  nx)

2
 = n 

and on multiplying by x(1 x), we get  

  









n

0k k

n
x

k
(1 x)

nk
( nx)

2
 = nx(1  x) 

or  

  









n

0k k

n
x

k
(1  x)

nk
(x  k/n)

2
 = 

n

)x1(x 
   …(3) 

The maximum value of x(1  x) in [0, 1] being 
4

1 . 

 


 






n

0k

2knk

n4

1
)n/kx()x1(x

k

n
     …(4) 

Continuity of f on the closed interval [0, 1], implies that f is bounded and uniformly 

continuous on [0, 1]. 

Hence there exists K > 0, such that  

 |f(x)|  K,           x [0, 1] 

and for any  > 0, there exists  > 0 such that for all x[0, 1]. 

  |f(x)  f(k/n)| < 
2

1 , when |x  k/n| <    …(5) 

 For any fixed but arbitrary x in [0, 1], the values 0, 1, 2, 3,…, n of k may be divided into 

two parts :  

 Let A be the set of values of k for which |x  k/n| < , and B the set of the remaining 

values, for which |x  k/n|  . 

 For k B, using (4),  
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Bk

2knk

Bk

2knk

n4

1
)n/kx()x1(x

k

n
δ)x1(x

k

n
 

 
2

knk

Bk δn4

1
)x1(x

k

n








 



       …(6) 

Using (1), we see that for this fixed x in [0, 1], 

  |f(x)  Bn(x)| = 


 






n

0k

knk )]n/k(f)x(f[)x1(x
k

n
 

             k
n

0k

x
k

n











(1  x)

nk
 |f(x)  f(k/n)| 

 Thus summation on the right may be split into two parts, according as         |x k/n| <  

or |x  k/n|   . Thus  

  |f(x)  Bn(x)|  











Ak

kx
k

n
(1  x)

nk
 |f(x)  f(k/n)| 

    + 











Bk k

n
x

k
(1  x)

nk
 |f(x)  f(k/n)| 

            <  
 





















Ak Bk

kknk x
k

n
K2)x1(x

k

n

2

ε
(1  x)

nk
 

             /2 + 2K/4n
2
 < ,  using (1), (5) and (6), 

for values of n greater than K/
2
. 

 Thus {Bn(x)} converges uniformly to f(x) on [0, 1]. 

Example 2.2.18 If f is continuous on [0, 1], and if  

  
1

0

n )x(fx dx = 0,   for n = 0, 1, 2,…    …(1) 

then show that f(x) = 0 on [0, 1]. 

Solution. From (1), it follows that, the integral of the product of f with any polynomial is zero. 

Now, since f is continuous on [0, 1], therefore, by ‘Weierstrass approximation theorem’, there 

exists a sequence {Pn} of polynomials, such that Pnf uniformly on [0, 1]. And so Pnff
2
 

uniformly on [0, 1], since f, being continuous, is bounded on [0, 1]. Therefore,  
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1

0

1

0

n
n

2 dxfPlimdxf  = 0, using (1) 

  f
2
 = 0 on [0, 1]. Hence f = 0 on [0, 1]. 

2.3 Check Your Progress 

Fill the blanks in the following questions with your understanding. 

Q.1. Given the series n

n = 1

f


 for which 

                           Sn(x) = 4 2

2

1
log (1 + n x )

2n
, x [0,1]   

Show that the series n

n = 1

f


 does not converge uniformly, but the given series can be 

differentiated term by term. 

Proof. Here  Sn(x) = 4 2

2

1
log (1 + n x )

2n
, x [0,1]    

Therefore, f(x) = 
n
lim


Sn(x) = 
n
lim


4 2

2

1
log (1 + n x )

2n
= ……….. x [0,1]   (Check) 

Hence f (x) = 0 

Also 
n
lim


S (x)n
 = 

n
lim


…………….= 0 x [0,1]   (Check) 

     f (x)  = 
n
lim


S (x)n
  

Thus term by term differentiable is holds. 

The series n

n = 1

f


 does not converge uniformly for x [0,1] , since the sequence {S (x)n
 } = 

2

4 2

n x

1 + n x
} has zero as point of non-uniform convergence. 

Q.2.  If 
na is convergent, then show that n

x

a

n
 is uniformly convergent on [0, 1]. 

Proof. Let fn(x) = an and gn(x) = 
x

1

n
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The series 
n ( )a x =

nf ( )x is convergent (given) 

Since it is independent of x, so it is uniformly convergent on [0, 1]. 

Also, {
x

1

n
} is monotonic decreasing on [0, 1] and | gn(x)| = |

x

1

n
| = 

x

1

n
…… = 1 

Therefore, the sequence {gn(x)}is ……………..and bounded on [0, 1] for all n in N. 

Hence by Abel’s test, the series n
n(x) n x

a
f g (x) =

n
  is uniformly convergent on [0, 1] 

 

2.4 Summary of Lesson 

The lesson starts with important theorem stating that if a sequence (series) of continuous 

function converges uniformly, then the limit function is also uniformly convergent but converse 

is not true. The converse is assured by Dini’s Theorem with an additional condition that the 

sequence of functions must be monotonically increasing. Further the lesson states that term by 

term integration and differentiation is possible in case of uniformly convergent series not 

function, but converse in not true as is asserted by many examples. Finally the lesson end with 

Weierstrass Approximation Theorem. 

2.4  Key Words 

 

1. Sequence and Series of real numbers. 

2. Cauchy Criterion for convergence. 

3. p-test for convergence of series of real numbers. 

4. Alternating series test. 

 

 

2.5 Self-Assessment Test 

Q.1. Show that the sequence whose n
th

 term is fn(x) = 
1

1+ nx
can be integrated term by  

        term on [0, 1], but not uniformly convergent on [0, 1]. 

Q.2. Show that the series for which Sn(x) = nx(1 – x)
n
 can be integrated term by term  

        on [0, 1]. 

2.6 Answers to check your progress  
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A.1. 0, 
4

2 4 2

1 2 n x
.

2 n 1 + n x

 
 
 

. 

A.2. 
0

1

n
, Monotonic decreasing. 

2.7 References/ Suggested Readings 

     1. W. Rudin, Principles of Mathematical Analysis (3rd edition) McGraw-Hill,  

    Kogakusha,1976, International student edition. 
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3. R.R. Goldberg, Methods of Real Analysis, John Wiley and Sons, Inc., New  

    York, 1976. 



Real Analysis  MAL-512 

DDE, GJUS&T, Hisar  49 |  

 

 

MAL-512: M. Sc. Mathematics (Real Analysis) 

Lesson No. 3                                                               Written by Dr. Vizender Singh 

Lesson: Power Series & Linear Transformation 

Structure: 
3.0     Learning Objectives 

3.1     Introduction 

3.2     Power Series  

3.3     Linear Transformation 

3.4     Differentiation in R
n
 

3.5     Check Your Progress 

3.6     Summary 

3.7     Keywords 

3.8     Self-Assessment Test 

3.9     Answers to check your progress 

3.10 References/ Suggested Readings 

 

3.0 Learning Objective 

 The learning objectives of this lesson are to get knowledge of power series whose 

terms are functions rather than real numbers.  

 To know by Abel’s theorem that assures the interval of uniform convergence can be 

extended up to and includes those end points. 

 To study the concept of Linear Transformation R
n
 space and its uniqueness.  

 To get know about the notion of differentiation in R
n
 and its chair rule in R

n
 Spaces. 

 

3.1 Introduction 
 

The terms of series which we have studied in earlier classes so far were of most part 

determined numbers. In such cases the series may be characterized at having constant terms. 

This, however, was not everywhere the case. In geometric series nr , for instance, the term 

only become determinate when value of r is assigned. In the present lesson, the study of 

behavior of this series did not terminate mere statement of convergence or the divergence, the 
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result: the series converges if 1r  , but diverges if 1r  . The solution thus depends, as do the 

term of series, on the value of quality left undetermined by a variable. In this lesson we propose 

only to consider, in detail within the scope of the present work, series whose generic term has 

the form n

na x .  

 

3.2 Power Series  

Definition 3.2.1 A of the form  

a0 + a1x + a2x
2
 +…+ anx

n
 + …  



0n

n
n xa  

This is called power series (in x) and the numbers an (dependent on n but not on x) it’s 

coefficients. 

 If a power series converges for no value of x other than x = 0, then we say that it is nowhere 

convergent. If it converges for all values of x, it is called everywhere convergent. 

Thus if anx
n
 is a power series which does not converge everywhere or nowhere, then a definite 

positive number R exists such that anx
n
 converges ( absolutely) for every |x| < R but diverges 

for every |x| > R. The number R, which is associated with every power series, is called the 

radius of convergence and the interval, (R, R), the interval of convergence, of the given power 

series.  

Theorem 3.2.2. If 
R

1
|a|lim n/1

n  , then the series anx
n
 is convergent (absolutely) for |x| < R 

and divergent for |x| > R. 

Proof. Now 

  
R

|x|
|xa|lim n/1n

n
n




 

Hence by Cauchy’s root test, the series anx
n
 is absolutely convergent and therefore convergent 

for |x| < R and divergent for |x| > R. 

 

Definition 3.2.3 The radius of convergence R of a power series is defined to be equal to  

  0|a|limwhen,
|a|lim

1 n/1
nn/1

n
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          ,          when  n/1
n |a|lim  = 0 

       0     ,  when n/1
n |a|lim  =  

Thus for a nowhere convergent power series, R = 0, while for an every-where convergent power 

series, R = . 

Theorem 3.2.4 If a power series anx
n
 converges for x = x0 then it is absolutely convergent for 

every x = x1, when |x1| < |x0|. 

Proof. Since the series an
n
0x  is convergent, therefore an

n
0x  0, as n  . 

Thus, for  = 
2
1 (say), there exists an integer N such that  

  |an
n
0x - 0| < 

2
1 , for n  N, and so  

  |an
n
1x | = |an

n
0x | . 

n

0

1

x

x
 

2
1  

n

0

1

x

x
, for n  N 

But 

n

0

1

x

x
 is a convergent geometric series with common ratio r = 1

x

x

0

1  . 

Therefore, by comparison test, the series |an
n
1x | converges. 

Hence anx
n
 is absolutely convergent for every x = x1, when |x1| < |x0|. 

Theorem 3.2.5 If a power series anx
n
 diverges for x = x, then it diverges for every x = x, 

where |x| > |x|. 

Proof. If the series was convergent for x = x then it would have to converge for all x with |x| < 

|x|, and in particular at x, which contradicts the hypothesis. Hence the theorem is obvious.  

Example 3.2.6 Find the radius of convergence of the series  

 (i) x + 
!3

x

!2

x 32

  + …  (ii) 1 + x + 2! x
2 

+ 3! + 4! x
4
 + … 

Solution. (i) Here 
1

!
a
n n
  

The radius of convergence R = lim
n

1

( 1)!
lim

!

n

n
n

a n

a n



  = 

( 1) !
lim

!n

n n

n


= . 
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Therefore the series converges absolutely for all values of x.  

(ii) Here !a n
n
  

The radius of convergence R = lim
n

1

( )!
lim

( 1)!

n

n
n

a n

a n





 = 
!

lim
( 1) !n

n

n n 
= 0. Therefore the series 

converges for no value of x, of course other than zero.  

Example 3.2.7 Find the interval of absolute convergence for the series 


1n

nn n/x . 

Solution. It is a power series and will therefore be absolutely convergent within its interval of 

convergence. Now, the radius of convergence  

  R = 
n/1

n

n/1
n

n

1
lim

1

|a|lim

1
 

Hence the series converges absolutely for all x.  

Theorem 3.2.8 If a power series anx
n
 converge for |x| < R, and let   

  f(x) = anx
n
, |x| < R. 

then anx
n
 converges uniformly on [R + , R], where  > 0 and that the function f is 

continuous and differentiable on( R, R) and 

  f (x) = nanx
1

, |x| < R     …(1) 

Proof.  Let  > 0 be any number given. 

For |x|  R  , we have  

  |anx
n
|  |an|(R  )

n
. 

But since an(R)
 n

, converges absolutely, therefore by Weierstrass’s M-test, the series anx
n
 

converges uniformly on [R + , R]. 

 Again, since every term of the series anx
n
 is continuous and differentiable on (R, R), 

and anx
n
 is uniformly convergent on [R + , R  ], therefore its sum function f is also 

continuous and differentiable on (R, R). 

Also  

  n/1
n

n/1

n

n/1
n

n
|a|)n(lim|na|lim


  = 1/R 
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 Hence the differentiated series nanx
n1

 is also a power series and has the same radius of 

convergence R as anx
n
. Therefore nanx

n1
 is uniformly convergent in [R + , R ]. 

 Hence  

  f (x) = nanx
n1

,  |x| < R 

Uniqueness Theorem 

Theorem 3.2.9 If  anx
n
 and  bnx

n
 converge on some interval (r, r), r > 0 to the same 

function f, then 

   an = bn for all nN. 

Proof. Under the given condition, the function f have derivatives of all order in (r, r) given by  

  f
(k)

(x) = 





kn

)1n(n  (n2) … (n k+1) an x
nk

 

Putting x = 0, this yields 

  f
(k)

(0) = k| ak and f
k
(0) = k|  bk 

for all k  N. Hence 

  ak = bk for all kN. 

This completes the proof or the theorem.  

Abel’s Theorem (First form)  

Theorem 3.2.10 If a power series 


0n

n
n xa  converges at x = R of the interval of convergence 

(R, R), then it is uniformly convergent in the closed interval [0, R]. 

Proof.  Let Sn,p = an+1 R
n+1

 + an+2 R
n+2

 +…+ an+p R
n+p

, p = 1, 2,… 

Then ,  

  an+1R
n+1

 = Sn,1 

  an+2R
n+2

 = Sn,2  Sn,1 

     

  an+pR
n+p

 = Sn,p  Sn,p1      …(1) 

Let  > 0 be given. 
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Since the number series 


0n

n
nRa  is convergent, therefore by Cauchy’s general principle of 

convergence, there exists an integer N such that for n  N,  

  |Sn,q| < ,  for all  q = 1, 2, 3,…    …(2) 

Note that  

  

1n1pnpn

R

x
...

R

x

R

x




























 1, for 0  x  R 

and using (1) and (2), we have for n  N 

|an+1x
n+1

 + an+2x
n+2

 +…+ an+px
n+p

| 

     =  
pn

pn
pn

2n

2n
2n

1n

1n
1n

R

x
Ra...

R

x
Ra

R

x
Ra














 


























 

     =  ...
R

x

R

x
S

R

x

R

x
S

3n2n

2,n

2n1n

1,n 






























































 

                      + Sn,p1

pn

p,n

pn1pn

R

x
S

R

x

R

x









































 

          |Sn,1| ...
R

x

R

x
|S|

R

x

R

x
3n2n

2,n

2n1n































































 

                                  + |Sn,p1|
pn

p,n

pn1pn

R

x
|S|

R

x

R

x








































 

     <     











































...
R

x

R

x

R

x

R

x
3n2n2n1n

 

         























 pnpn

R

x

R

x
 

     = 

1n

R

x










   for all n  N, p  1, and for all x[0, R]. 

Hence by Cauchy’s criterion, the series converges uniformly on [0, R]. 
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Note: If a power series with interval of convergence (-R, R), diverges at end point x = R, it 

can’t be uniformly convergent on the interval [0, R]. 

For otherwise, if the series is uniformly convergent on [0, R], it will converge at x = R as 

well, which contradict to given condition. 

Abel’s Theorem (Second form)  

Theorem 3.2.11 Let R be the radius of convergence of a power series anx
n
 and let f(x) = 

anx
n
, for R < x < R. If the series anR

n
 converges, then  

  
0Rx

lim


f(x) = anR
n
 

Proof. Taking x = Ry, we get  

  anx
n
 = anR

n
y

n
 = bny

n
,  where bn = anR

n
. 

It is a power series with radius of convergence R, where  

  R = 1
|Ra|lim

1
n/1n

n

  

So, there is no loss of generality in taking R = 1.  

 Let 


0

n
n xa  be a power series with unit radius of convergence and let  

f(x) = 


0

n
n ,xa   1 < x < 1.  If the series an converges, then  

  





0

n
01x

a)x(flim  

 Let Sn = a0 + a1 + a2 +…+ an, S1 = 0, and let 





0n

n ,Sa  then  

     
 



 

 
m

0n

m

0n

1m

0n

m

0n

n
1n

mmn
n

n
1nn

n
n xSxSxSx)SS(xa  

                =  


 


 

1m

0n

m

0n

m
n

1n
1n

n
n xSxSxxS  

     = (1 x) 




1m

0n

n
n xS  + Smx

m
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For |x| < 1,  when m, since SmS, and x
m
0, we get  

  f(x) = (1  x)


0n

n
n xS ,    for  0 < x < 1.  

Again, since SnS, for  > 0, there exists N such that  

  |SnS| < /2, for all n  N 

Also  

  (1x)





0n

n 1|x|,1x       …(3) 

Hence for n  N, we have, for 0 < x < 1, 

           |f(x)  S| = 





0n

n
n SxS)x1(  [by 1] 

       = 





0n

n
n x)SS()x1(  [by 3] 

       (1 x)  







N

0n 1Nn

nn
n x)x1(

2

ε
x|SS|  [by 2] 

                  (1 x) 



N

0n

n
n

2

ε
x|SS|  

For a fixed N,   (1 x)



N

0n

n
n x|SS|  is a positive continuous function of x, and vanishes at x = 1. 

Therefore, there exists  > 0, such that for 1 < x < 1,                                               

                                            (1 x) 



N

0n

n |SS| x
n
 < /2.  

   |f(x) S| < ε
2

ε

2

ε
 , when 1   < x < 1 

Hence 






0n

n
01x

aS)x(flim  

Example 3.2.12 Prove that 
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5

1

3

1
1

6

x

3

1
1

4

x

2

x
)x(tan

2

1 642
21  +….,    1 < x  1.  

Solution.  We have  

  tan
1

x = x  
7

x

5

x

3

x 753

  +…, 1  x  1 

and  

  (1 + x
2
)
1

 = 1  x
2
 + x

4
  x

6
 +…, 1 < x < 1 

 Both the series are absolutely convergent in (1, 1), therefore their Cauchy product will 

converge absolutely to the product of their sums, (1 + x
2
)
1

 tan
1

x in (1, 1). 

   (1 + x
2
)
1

 tan
1

x = x  53 x
5

1

3

1
1x

3

1
1 

















  …,   1 < x < 1 

Integrating,  

  


















5

1

3

1
1

6

x

3

1
1

4

x

2

x
)x(tan2

1
642

21   …,     1 < x < 1 

the constant of integration vanishes.  

 The power series on the right converges at x = 1 also, so that by Abel’s theorem,  

  


















5

1

3

1
1

6

x

3

1
1

4

x

2

x
)x(tan2

1
642

21 …, 1 < x  1 

Example 3.2.13 Show that  

  log (1 + x) = x  
4

x

3

x

2

x 432

  +…, 1 < x  1,  

and deduce that  

  log 2 = 1  4
1

3
1

2
1   +… 

Solution. We know  

  (1 + x)
1

 = 1  x + x
2
  x

3
 +…,    1 < x < 1 

Integrating, 

  log (1 + x) = x  
4

x

3

x

2

x 432

  +…,    1 < x < 1 
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the constant of integration vanishes as can be verified by putting x = 0.  

 The power series on the right converges at x = 1 also. Therefore by Abel’s theorem  

  log(1 + x) = x  
4

x

3

x

2

x 432

  +…,    1 < x  1 

At x = 1, we get, by Abel’s theorem (second form), 

  log 2 = 
1x

lim  log(1 + x) = 1  4
1

3
1

2
1   +… 

Example 3.2.13 Show that  

  ...,)
3

1

2

1
|1(

4

x
)

2

1
1(

3

x

2

x
)]x1[log(

2

1 432
2     1 < x  1 

We know  

  log (1 +x) = x  
4

x

3

x

2

x 432

  +…,     1 < x  1 

and  

  (1 + x)
1

 = 1  x + x
2
  x

3
 + x

4
 …,   1 < x < 1 

 Both  the series are absolutely convergent in ]1, 1[, therefore their Cauchy product will 

converge to (1 + x)
1

 log (1 + x). Thus  

  (1 +x)
1

 log(1 +x) = x x
2 



















3

1

2

1
1x

2

1
1 3

 
 …,    1 < x < 1 

Integrating, 

  )
3

1

2

1
1(

4

x
)

2

1
1(

3

x

2

x
)]x1[log(

2

1 432
2    …,  1 < x < 1 

the constant of integration vanishes.  

 Since the series on the right converges at x = 1 also, therefore by Abel’s.  

Theorem, we have  

  )
3

1

2

1
1(

4

x
)

2

1
1(

3

x

2

x
)]x1[log(

2

1 432
2    …,  1 < x  1 

3.3 Linear Transformations 

Definitions 3.3.1 (i) Let X be a subset of R
n
. Then X is said to be a vector subspace of   
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      R
n
 if ax + by  X for all x, y  X and a, b any scalars. 

(ii) If x1, x2,…, xn  R
n
 and c1, c2,…. cm are scalars, then the vector  

x = c1x1 + c2x2 + ….+ cnxn is called a linear combination of x1, x2,…., xn. 

(iii) If SR
n
 and if A is the set of linear combinations of elements of S, then we say  

        that S spans A or that A is the linear span of S. 

(iv) We say that the set of vectors {x1, x2,…., xn} is linearly independent if  

c1x1 + c2x2 +…+ cnxn = 0    c1 = c2…= cn = 0. 

(v) A vector space X is said to have dimension k if X contains an linearly independent  

     set of k vectors but no independent set of (k + 1) vectors. We then write dim X = k. 

     The set consists g of 0(zero vector) alone is a vector space. Its dimension is 0. 

(vi) A subset B of a vector space X is said to be a basis of X if B is independent and B   

       spans X.  

Remark 3.3.2 (i) Any set consisting of the 0 vector is dependent or equivalently, no  

       independent set contains the zero vector.  

(ii) If B = {x1, x2,… xm} is a basis of a vector space X, then every xX can be  

      expressed equally in the form  

  x = 


m

1i

iixc . The numbers c1, c2,…, cm are called coordinates of x with  

       respect to the basis B. The following theorems of vector-space will be utilized. 

Theorem 3.3.3 If a vector space X is spanned by a set of k vectors, then dimension of  

                          X  k.  

Theorem 3.3.4 Let X be a vector space with dim X = n. Then  

(i) A set A of n vectors in X spans X  A is independent. 

(ii) X has a basis, and every basis consists of n-vectors. 

(iii) If 1  r  n and {y1, y2,…., yr} is an linearly independent set in X. Then X has a basis 

containing {y1, y2,…., yr}. 

Definition 3.3.5 Let X and Y be two vector spaces. A mapping T : XY is said to be Tinear 

Transformation if (i) T(x1 + x2) = Tx1 + Tx2  
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                                      (ii) T(cx) = cTx  x1, x2  X and all scalars c.  

Linear transformations of X into X will be called linear operators on X. Observe that T(0) = 0 

for any Linear Transformation T. We say that a Linear Transformation T on X is invertible iff T 

is one-one and onto. T is invertible, then we can define an operator T
1

 on X by setting T
1

(Tx) 

= x   xX. Also in this case, we have T(T
1

x) = x  xX and that T
1

 is linear.  

Theorem 3.3.6 A Linear Transformation T on a finite dimensional vector space X is one-one 

 the range of T is all of X, i.e., T is onto. 

Definition 3.3.7 (i) Let X and Y be vector spaces. Denote by L(X, Y), the set of all   

Linear Transformations of X into Y. If T1, T2  L(X, Y) and if c1, c2 are scalars, we define 

 (c1T1 + c2T2)x = c1T1x + c2T2x   xX. Also c1T1 + c2T2  L(X, Y) 

(ii) Let X, Y, Z be vector spaces and let  

      T  L(X, Y), UL(Y, Z) the product UT is defined by (UT)x = U(Tx), xX. Then 

UTL(X, Z) . Observe that UT need not be the same as TU even if X = Y = Z.  

(iii) For TL(R
n
, R

m
), we define the norm ||T|| of T to be the l.u.b |Tx|, where x ranges over all 

vectors R
n
 with |x|  1.  

Observe that the inequality |Tx|  ||T||  |x| holds for all xR
n
. Also if  is such that |Tx|  |x|  

x R
n
, then  ||T||  . 

Theorem 3.3.8 Let T  L(R
n
, R

m
). Then ||T|| <   and T is a uniformly continuous mapping of 

R
n
 into R

m
. 

Proof.  Let E = {e1, e2, … en} be the basis of R
n
 and let x  R

n
 with |x|  1.               Since E 

spans R
n
,  scalars c1, c2, …, cn s. t. x = ciei so that | ciei| = |x|  1. 

  |ci|  1 for i = 1, ….n. 

Then, we have 

                   |Tx| = |T(c1e1 + c2e2 +…+ enxn )|   

                               = | ci Tei|   |ci|  |Tei|  |Tei|. 

As we know that  

                         ||T|| = Sup. {|Tx| : ||x||  1} 

Also by definition of ||T||  and linearity of T, ||T(x)||  ||T|| ||x|| for all x  R
n
.   
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It follows that ||T||  


n

1i

i |Te|  < . 

For uniform continuity of T, observe that  

  |Tx  Ty| = |T(x  y)|  ||T||  |xy|, (x, y,  R
n
) 

So for  > 0, we can choose  = 
||T||

ε
s. t.  

  |x  y| <     |Tx  Ty| < ||T|| 
||T||

ε
=  . 

Therefore T is uniformly continuous. 

 Theorem 3.3.9 If T, U  L (R
n
, R

m
) and c is a scalar, then  

  ||T + U||  ||T|| + ||U||, ||cT|| = |c| ||T|| 

and L(R
n
, R

m
) is a metric space w.r.t. metric d(U, W) = ||U - W|| for all U, W,  L(R

n
, R

m
). 

Proof. For any x  R
n
 with ||x||  1, we have  

                        |(T + U)x| = |Tx + Ux|  |Tx| + |Ux| 

         (||T|| + ||U||) 

Hence ||T + U||   ||T|| + ||U|| 

Similarly, we can prove that ||cT|| = |c|   ||T|| 

To prove that L(R
n
, R

m
) is a metric space, let  U, V, W,  L(R

n
, R

m
), then clearly d(U, W)  0 

and  d(U, W) = d(W, U). 

  d(U, W) = ||U  W|| = ||(U V) + (V W)||  ||UV|| + ||VW|| 

                                        d(U, V) + d(V, W). 

which is the triangle inequality.  

Theorem 3.3.10 Let C denote the set of all invertible linear operators on R
n
.  

(i) If T  C , ||T
1

|| = 
α

1
,  UL(R

n
) and ||U T|| = B <  , then U C  

(ii) C  is an open subset of L(R
n
) and the mapping f : C  C defined by             f(T) = T

1
 

 T   is continuous  

Proof. For all xR
n
, we have   
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  |x| = |T
1

Tx|  ||T
1

||  |Tx| = 
α

1
 |Tx| so that  

  () |x| = |x|  |x|  |Tx|  ||U T||  |x| 

                                       |Tx| - |(UT)x| = |Tx|  |Ux, Tx| 

                                        = |Tx|  |Tx Ux|  

                                                                |Tx| (|Tx |  |Ux|)    = |Ux| 

Thus |Ux|  () |x|  xR
n
                                                            …(1) 

Now  Ux = Uy     Ux  Uy = 0      U(x  y) = 0 

  |U(x  y)| = 0   |()|  |x  y| = 0 by (1) 

   |x y| = 0         y = 0        x = y. 

This shows that U is one-one. 

Also, U is also onto. Hence U is an invertible operator so that U C.  

(ii)  As shown in (i), if T  C, then  = 
||T||

1
1

 is s. t. every U with ||UT|| <  belongs to C. 

Thus to show that C  is open, replacing x in (1) by U
1

y, we have 

  () |U
1

 y|  |UU
1

 y| = |y| 

So that () ||U
1

 ||  |y|  |y|  or ||U
1

||  ()
1

. 

Now |f(U)  f(T)| = |U
1

  T
1

| = |U
1

(T  U) T
1

| 

        ||U
1

|| ||TU||  ||T
1

||  

        ()
1

  
α

1
 

This shows that f is continuous since 0 as UT. 

3.4 Differentiation in R
n
 

Definition 3.4.1 Let A be an open subset of R
n
, xA and f a mapping of A into R

m
. If there 

exists a linear transformation T of R
n
 into R

m
 such that  

  
0

| [ ( ) ( )] |
lim

| |h

f x h f x Th

h

  
 = 0              …(A) 

Then f is said to differentiable at x and we write  
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  f (x) = T       …(B) 

The linear transformation T is called linear derivative of f at x. 

This can be written in the form 

                        f(x + h) – f(x) = hT + r(h), where, 
| ( ) |

0
| |

r h

h
 as h 0  

Uniqueness of the derivatives  

Theorem 3.4.2 Let A be an open subset of R
n
, x A and f a mapping of A into R

m
. If f is 

differentiable with T = T1 and T = T2, where T1, T2  L(R
n
, R

m
), then  T1 = T2. 

Proof. Let U = T1  T2, we have  

  |Uh| = |(T1  T2)h| = |(T1h  T2h)| 

         = |T1h  f(x + h) + f(x) + f(x + h)  f(x)  T2h| 

         = |T1h  f(x + h) + f(x)| + |f(x + h)  f(x)  T2h| 

         = |f(x + h)  f(x)  T1h| + |f(x + h)  f(x)  T2h| 

             
|h|

|hTx(f)hx(f|

|h|

|hT)x(f)hx(f|

h

Uh 21 



  

                        0 as h 0 by (A) differentiability of f. 

For fixed h = 0, it follows that  

  
| ( ) |

| |

n

n

U t

t
  0 as t0     …(1) 

Linearity of U shows that U(th) = tUh, so that the left hand side of (1) is independent of t.  

Thus for all hR
n
, we have Uh = 0    (T1  T2)h = 0     T1h  T2h = 0 

 T1h = T2h      T1 = T2 

The Chain Rule of Differentiation  

Theorem. Suppose E is an open subset of R
n
, f maps E into R

m
, f is differentiable at x0E, g 

maps an open set containing f(E) into R
k
, and g is differentiable at f(x0). Then the mapping F of 

E into R
k
 defined by  

  F(x) = g(f(x)) is differentiable at x0 and  

F(x0) = g(f(x0)) f(x0) product of two linear transformations.  
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Proof. Let y0 = f(x0), T = f(x0), U = g(y0) and define  

  u(x) = f(x)  f(x0)  T(x x0) 

  v(y) = g(y)  g(y0)  U(y  y0) 

  r(x) = F(x)  F(x0)  UT (x  x0) 

We want to prove that F(x0) = UT, that is,  

  
| ( ) |

lim
| |

00

r x

x xx x 
 = 0 

The definition of F, r and y0 show that  

  r(x) = g(f(x))  g(y0)  UT(x  x0) 

Now  UT (x  x0) = U(T(x  x0)) = U(f(x)  y0  f(x) + f(x0) + T(x  x0)) 

          = U(f(x)  y0)  U(f(x)f(x0)T(xx0)) by linearity of U. 

Hence  r(x) = [g(f(x)]  g(y0)  U(f(x)  y0)] + [U(f(x)  f(x0)  T(xx0))] 

        = v(f(x)) + U(u (x)) 

By definition of U and T, we have  

We have  
0

| ( ) |

| |

v y

y y
  0 as y  y0 and 

|xx|

|)x(u|

0
 0 as x  x0. 

This means that for a given  > 0, we can find  > 0 and  

 > 0 such that |v(y)| <  |y – y0| =  |f(x)  f(x0)| if |y – y0|  <  and 

                         |u(x)|  |x  x0| if |x  x0| < . 

It follows that  

  |v(f(x))|   |f(x)  f(x0)| =  |u(x) + T(x  x0)| 

       |u(x)| +  |T(x  x0)| 

      
2
 |x  x0| +  ||T||  |xx0|  …(2) 

and  

  |U(u(x))|  ||U||  |u(x)|   ||U|| |x  x0|    …(3) 

      if |x  x0| <    
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Hence 
0 0

| ( ( )) ( ( )) || ( ) |

| | | |

v f x U u xr x

x x x x




 
  

     
0 0

| ( ( )) | | ( ( )) |

| | | |

v f x U u x

x x x x


 
 

     
2
 + ||T|| + ||U||                          [Using  (2) and (3)]. 

                             <  whenever  |x  x0| < .                                       

It follows that 
|xx|

|)x(r|

0
0 as xx0. 

Second Proof. Put y0 = f(x0), A = f(x0), B = g(y0) and define  

  u(h) = f(x0 + h)  f(x0)  Ah,    

  v(k) = g(y0 + k)  g(y0)  Bk       hR
n
, k R

m
 

for which f(x0 + h) and g(y0 + k) are defined.  

Then,  |u(h)| = |h|, |v(k)| = |k| where  0 as h0 and 0 as k0 (as f and  g are 

differentiable) 

Given h, put k = f(x0 + h)  f(x0). Then  

  |k| = |Ah + u(h)|  [||A|| + ] |h|    …(2) 

        (by definition of F(x)) 

and  

  F(x0 + h)  F(x0)  Bah = g(y0 + k)  g(y0)  Bah 

       = B(k  Ah) + v (k) 

Hence (1) and (2) imply that for h  0, 

  
|h|

|BAh)x(F)hx(F| 00 
 ||B||  + [||A|| + ] 

Let h0, then 0 . Also k0     0. It follows that F(x0) = BA. 

3.5 Check Your Progress 

           Q.1. Define Power Series, Radius of Convergence and Interval if Convergence. 

                   

  Fill the blanks in the following: 
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Q.2. Find the radius of convergence of power series, 
2 1

nz

n




. 

Solution. Here  
1

2 1n
a
n



 so that 

                           
1

1

1 2 1n
a
n 


 

 

                        
1

lim n

n

a
R

an 




= ………………… 

                                = 
2.2 1

lim
2 1

n

n

n

 
 

 
 

                                = 

1
2 2

2
lim

1
2 1

2

n

n

n

n

n

 
 

 

    
 

= ……………… 

Therefore, R = 2. 

Q.3. By above theorem 3.2.8, f has derivatives of all orders in (R, R),  

                    which are given by  

  f
(m)

(x) = 





mn

mn
nxa)1mn)...(1n(n ,    

         and in particular,  

  f
(m)

(0) =……………, (m = 0, 1, 2,…) 

 Q.4. If T  L(R
n
, R

m
) and U  L(R

m
, R

k
), then  

  ||UT||  ||U||   ||T|| 

  

Proof.   We have |(UT)x| = |U(Tx)|  …………. ||U||   ||T||    |x| 

                                       ||UT||   ||U||  ||T||. 

 Q.5. Define differentiation in R
n
. 

3.6 Summary of Lesson 
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 The behavior of a power series at |x| = R, depends totally on the character of sequence 

{an} of its coefficients. For example, both the series 
2

nx

n
  and 

nx

n
 converges when |x| < 1 and 

diverges when |x| > 1. But when |x| = 1 the first series converges while the second diverges at x 

= 1, and converges at x = -1. The Abel’s theorem assures that the interval of uniform 

convergence can be extended up to and included those end points. If T  L(R
n
, R

m
), then ||T|| is 

finite  and T is a uniformly continuous mapping of R
n
 into R

m
. The set L(R

n
, R

m
) is a metric 

space. The derivative on R
n
 is unique and follow chain rule of differentiation. 

 

3.7 Key Words 
 

    Power Series on Number, Cauchy Root Test, Vector Space, Linear Transformation, Basis 

Set, Linear Dependent Set, Linearly independent Set, Differentiation and Norm of Operator. 

    

3.8 Self-Assessment Test 

Q.1. Determine the radius of convergence and interval of convergence for the  

        following power series: 

         {i} 3n nn x                 {ii} 
 1

2

n

n

x 
  

       {iii} 
 ! 2

n

n

n x

n


           {iv} 21.2.3...

1.3.5....(2 1)

nn
x

n 
  

Q.2. Show that the series: 1 + x + 
2 4

2 4

x x
  +…, [-1, k]. 0 < k < 1 is uniformly  

        convergent. 

 

3.9 Answers to check your progress 

 A.1. Read Definition 3.2.1. 

 A.2. 
12 1

lim
2 1

n

n
n

 
 

 
, 2 
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 A.3. m! am 

 A. 4. ||U||  |Tx| 

 A.5. Read Definition 3.4.1 
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MAL-512: M. Sc. Mathematics (Real Analysis) 

Lesson No. IV                                                           Written by Dr. Vizender Singh 

 

Lesson: Functions of Several Variables 

Structure: 
   4.0   Learning Objectives 

4.1    Introduction 

4.2    Function of Several Variable  

4.3    Check Your Progress 

4.4    Summary 

4.5    Keywords 

4.6    Self-Assessment Test  

4.7    Answers to check your progress  

4.8    References/ Suggested Readings 

 

4.0 Learning Objective 
 

 The learning objectives of this lesson are to consider function of more than one 

variable to study its properties like, limit, continuity and differentiability. 

 To study the sufficient condition for a function of two or more variable to be 

continuous and differentiable. 

 To study sufficient condition for equality of partial derivative fxy = fyx, in the form of 

Young’s and Schwarz’s theorem. 

 To study Taylor’s theorem which express a two variable function in power of x and y. 

 To study existence theorem, known as Implicit function theorem, that specifies 

conditions which guarantee that a functional equation define an implicit function 

even though actual determination may not be possible.  

 

4.1 Introduction 
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So far attention has mainly been directed to function of single independent variable and the 

application of differential calculus to such functions has been considered. In this lesson, we 

shall be mainly concerned with the application of differential calculus to the function of more 

than one variable. The characteristic properties of a function of n independent variable may 

usually be understood by the study of a function of two or three variables and its restriction of 

two or three variable will be generally maintained. This restriction has the considerable 

advantage of simplifying the formulae and of reducing mechanical labour. 

If x, y are two independent variable and variable z depends for its values on the values of x, 

y by functional relation 

z = f(x, y) 

then we say z is a function of x, y. The ordered pair of numbers (x, y) is called a point and 

the aggregate of the pairs of numbers (x, y) is said to be domain (region) of definition of the 

function. 

 

 4.2 Partial Derivatives 

Let f be a function of two or more that two (several) variables, then the ordinary 

derivative of f with respect to one of the independent variables, keeping all other independent 

variables constant is called the partial derivative. Partial derivative of f(x, y) with respect to x is 

generally denoted by f/x or fx or fx(x, y). Similarly,  those with respect to y are denoted by 

f/y or fy or fy(x, y).  

 
( , ) ( , )

lim
0

f f x x y f x y

x xx





  


 
 

when these limits exist.  

The partial derivatives at a particular point (a, b) are defined as (in case the limits exist) 

 fx(a, b) = 
h

)b,a()b,ha(f
lim

0h




 

 fy(a, b) = 
k

)b,a(f)kb,a(f
lim

0k




  

 

Example 4.2.1 For the function f(x, y),where  
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  f(x, y) = 













)0,0()y,x(,0

)0,0()y,x(,
yx

xy
22  

 both the partial derivatives exist at (0, 0), but the function is not continuous at (0, 0) .  

Solution. Setting y = mx, we see that  

  
2 2 2 2 20 0 0

.
lim ( , ) lim lim

1 1x x x

x mx m m
f x y

x m x m m  
  

  
. 

So that the limit depends on the value of m, i.e., on the path of approach and is different for the 

different paths followed and therefore does not exist. Hence the function f(x, y) is not 

continuous at (0, 0). Again  

  fx(0, 0) = 0
h

0
lim

h

)0,0(f)0,h0(f
lim

0h0h





 

  fy(0, 0) = 
k

)0,0(f)k0.0(f
lim

0k




 

   = 0
k

0
lim

0k



 

Definition 4.2.2 Let (x, y), (x + x, y + y) be two neighboring points and let 

  f = f(x + x, y + y)  f(x, y) 

 The function f is said to be differentiable at (x, y) if  

  f = A x + B y + x (x, y) + y (x, y)  …(1) 

where A and B are constants independent of x, y and ,  are functions of x, y tending to 

zero as x, y tend to zero simultaneously.  

 Also, A x + B y is then called the differential of f at (x, y) and is denoted by df. Thus  

  df = A x + B y 

From (1) when (x, y)  (0, 0), we get  

  f(x + x, y + y)  f(x, y)  0 

or 

   f(x + x, y + y)  f(x, y) 

 The function f is continuous at (x, y) 
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 Again, from (1), when y = 0 (i.e., y remains constant)  

  f = A x + x (x, 0) 

Dividing by x and proceeding to limits as x  0, we get  

  A
x

f





 

Similarly  

  B
y

f





 

 Thus the constants A and B are respectively the partial derivatives of f with respect to x 

and y.  

 Hence a function which is differentiable at a point possesses the first order partial 

derivatives thereat. Again the differential of f is given by  

  df = Ax + B y = 
y

f
x

x

f









y 

 Taking f = x, we get dx = x. 

Similarly taking f = y, we obtain dy = y. 

Thus the differentials dx, dy of x, y are respectively x and y, and  

  df = xfdy
y

f
dx

x

f










dx + fy dy    …(2) 

is the differential of f at (x, y). 

Note: If we replace x, y, by h, k in equation (1), we say that the function is differentiable at a 

point (a, b) of the domain of definition if df can be expressed as  

  df = f(a + h, b + k)  f(a, b) 

      = Ah + Bk + h(h, k) + k(h, k)    …(3) 

where A = fx, B = fy and ,  are functions of h, k tending to zero as h, k tend to zero 

simultaneously.  

Example 4.2.3 Let 
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  f(x, y) = 















)0,0()y,x(,0

)0,0()y,x(,
yx

yx
22

33

 

is continuous, possesses partial derivatives but is not differentiable at the origin. 

Solution. Here put x = r cos , y = r sin ,  

  
22

33

yx

yx




 = |r(cos

3
  sin

3
)|  2|r| = 2 22 yx   < , 

if  

  x
2
 < 

8

ε
y,

8

ε 2
2

2

  

or, if  

  |x| < ,| |
2 2 2 2

y
 

  

  
22

ε
|y|,

22

ε
|x|when,ε0

yx

yx
22

33





 

 
22

33

)0,0()y,x( yx

yx
lim






 = 0 

 
)0,0()y,x(

lim


f(x, y) = f(0, 0) 

Hence the function is continuous at (0, 0). 

Again,  

  fx(0, 0) = 1
h

0h
lim

h

)0,0(f)0,h(f
lim

0h0h








 

  fy(0, 0) = 1
k

k
lim

k

)0,0(f)k,0(f
lim

0k0k








 

Thus the function possesses partial derivatives at (0, 0). 

If the function is differentiable at (0, 0), then by definition  

  df = f(h, k)  f(0, 0) = Ah + Bk + h + k   …(1) 

when A and B are constants (A = fx(0, 0) = 1, B = fy(0, 0) = 1) and ,  tend to zero as (h, k) 

 (0, 0).  
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Putting h =  cos , k =  sin , and dividing by , we get  

  cos
3
  sin

3
 = cos +  cos  +  sin    …(2) 

 For arbitrary  = tan
1

 (h/k), 0 implies that (h, k)  (0, 0). Thus we get the limit,  

  cos
3
  sin

3
 = cos   sin  

or 

  cos  sin (cos   sin ) = 0 

which is plainly impossible for arbitrary .  

Thus the function is not differentiable at the origin.  

Example 4.2.4 Prove that the function  

  f(x, y) = |xy|  

is not differentiable at the point (0, 0), but  fx and fy both exist at the origin .  

Solution. fx(0, 0) = 0
h

0
lim

h

)0,0(f)0,h(f
lim

0h0h





 

  fy(0, 0) = 0
k

0
lim

k

)0,0(f)k,0(f
lim

0k0k





 

 If the function is differentiable at (0, 0), then by definition 

  f(h, k)  f(0, 0) = 0h + 0k + h + k 

where  and  are functions of h, k and tend to zero as (h, k)  (0, 0). 

Putting h =  cos , k =  sin  and dividing by , we get  

  |cos  sin |
1/2

 =  cos  +  sin  

Now for arbitrary value of , 0 implies that (h, k)  (0, 0). 

Taking the limit as 0, we get  

  |cos  sin |
1/2

 = 0. 

which is impossible for all arbitrary .   

Example 4.2.5 The function f, where  

  f(x, y) = 















0yxif,0

0yxif,
yx

yx
xy 22

22

22
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is differentiable at the origin.  

Solution. It is easy to show that  

  fx(0, 0) = 0 = fy(0, 0) 

Also when x
2
 + y

2
  0,  

  |fx| = 
222

2/522

222

5324

)yx(

)yx(6

)yx(

|yyx4yx|









 = 6(x

2
 + y

2
)

1/2
 

Evidently  

  
)0,0()y,x(

lim


fx(x, y) = 0 = fx(0, 0) 

Thus fx is continuous at (0, 0) and fy(0, 0) exists,  

 f is differentiable at (0, 0) 

 Partial Derivatives of Higher Order  

 If a function f has partial derivatives of the first order at each point (x, y) of a certain 

region, then fx, fy are themselves functions of x, y and may also possess partial derivatives. 

These are called second order partial derivatives of f and are denoted by   

  
2

2

x

f

x

f

x 



















 = fxx = 2x

f  

  
2

2

y

f

y

f

y 



















 = fyy = 2y

f  

  
yx

f

y

f

x

2





















 = fxy 

  
xy

f

x

f

y

2





















 = fyx 

Thus(in case the limits exist)  

  fxx(a, b) = 
h

)b,a(f)b,ha(f
lim xx

0h




 

  fxy(a, b) = 
h

)b,a(f)b,ha(f
lim

yy

0h




 

  fyx(a, b) = 
k

)b,a(f)kb,a(f
lim xx

0k
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  fyy(a, b) = 
k

)b,a(f)kb,a(f
lim

yy

0k




 

Change in the Order of Partial Derivation  

 Consider an example to show that fxy may be different from fyx. 

Example 4.2.6 Let  

  f(x, y) = 
22

22

yx

)yx(xy




, (x, y)  (0, 0), 

                             f(0, 0) = 0, then  at the origin fxy  fyx. 

Solution. Now 

  fxy(0, 0) = 
h

)0,0(f)0,h(f
lim

yy

0h




 

  fy(0, 0) = 
k

0
lim

k

)0(),f)k,0(f
lim

0k0k 



 = 0 

  fy(h, 0) = h
)kh(k

)kh(hk
lim

k

)0,h(f)k,h(f
lim

22

22

0k0k










 

  fxy = 
h

0h
lim

0h




 = 1 

Again  

  fyx(0, 0) = 
k

)0,0(f)k,0(f
lim xx

0k




 

But  

  fx(0, 0) = 0
h

)0,0(f)0,h(f
lim

0h





 

  fx(0, k) = k
)kh(h

)kh(hk
lim

h

)k,0(f)k,h(f
lim

22

22

0h0h










 

  fyx(0, 0) = 
k

0k
lim

0k




 = 1 

  fxy(0, 0)  fyx(0, 0) 

Sufficient Conditions for the Equality of fxy and fyx 
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We have two theorems to show that fxy = fyx at a point. 

Young’s Theorem 

Theorem 4.2.7 If fx and fy are both differentiable at a point (a, b) of the domain of definition of 

a function f, then  

  fxy(a, b) = fyx(a, b) 

Proof. We prove the theorem by taking equal increment h both for x and y and calculating (h, 

h) in two different ways.  

Let (a + h, b + h) be a point of this neighbourhood. Consider  

  (h, h) = f(a + h, b + h) f(a + h, b)  f(a, b + h) + f(a, b) 

  G(x) = f(x, b + h)  f(x, b) 

so that  

  (h, h) = G(a + h)  G(a)     …(1) 

Since fx exists in a neighbourhood of (a, b), the function G(x) is derivable in           (a, a + h) and 

therefore by Lagrange’s mean value theorem, we get from (1),  

  (h, h) = hG(a + h),   0 <  < 1 

              = h{fx(a + h, b + h)  fx(a + h, b)}   …(2) 

Again, since fx is differentiable at (a, b), we have 

  fx(a + h, b + h) fx(a, b) = hxx(a, b) + hfyx(a, b)  

      + h1(h, h) + h1(h, h)     …(3) 

and  

  fx(a + h, b)  fx(a, b) = hfxx(a, b) + h2(h, h)  …(4) 

where  1, 1, 2 all tend to zero as h0. 

From (2), (3), (4), we get  

  (h, h)/h
2
 = fyx(a, b) + 1(h, h) + 1(h, h)  2(h, h) …(5) 

Similarly, taking 

  H(y) = f(a + h, y)  f(a, y) 

we can show that  

  (h, h)/h
2
 = fxy(a, b) + 3(h, h) + 2(h, h)  2(h, h) …(6) 
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where 3, 2, 3 all tend to zero as h0. 

 On taking the limit as h0, we obtain from (5) and (6) 

  
20h h

)h,h(φ
lim


 = fxy(a, b) = fyx(a, b) 

Schwarz’s Theorem 

Theorem 4.2.8 If fy exists in a certain neighbourhood of a point (a, b) of the domain of 

definition of a function f, and fyx is continuous at (a, b), then fxy(a, b) exists, and is equal to fyx(a, 

b). 

Proof. Let (a + h, b + k) be a point of this neighborhood of (a, b).  

Take  

  (h, k) = f(a + h, b + k) f(a + h, b) f(a, b + k) + f(a, b) 

   G(x) = f(x, b + k)  f(x, b) 

so that  

  (h, k) = G(a + h)  G(a)     …(1)   

 Since fx exists in a neighbourhood of (a, b), the function g(x) is derivable in (a, a + h), 

and therefore by Lagrange’s mean value theorem, we get from (1) 

  (h, k) = hG(a + h),  0 <  < 1 

             = h{fx(a + h, b + k) fx(a + h, b)}   …(2) 

 Again, since fyx exists in a neighbourhood of (a, b), the function fx is derivable with 

respect to y in (b, b + k), and therefore by Lagrange’s mean value theorem, we get from (2) 

  (h, k) = hkfyx(a + h, b + k), 0 <  < 1 

or   

  






 




k

)b,a(f)kb,a(f

k

)b,ha(f)kb,ha(f

h

1
 

      = fyx(a + h, b + k) 

 Taking limits when k0, since fy and fyx exist in a neighbourhood of (a, b), we get 

  yx
0k

yy
flim

h

)b,a(f)b,ha(f





(a + h, b + k) 

Again, taking limits as h0, since fyx is continuous at (a, b), we get  
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  fxy(a, b) = 
0k0h

limlim


fyx(a + h, b + k) = fyx(a, b) 

Note:  If the conditions of Young’s or Schwarz’s theorem are satisfied then fxy = fyx at a point 

(a, b). But if the conditions are not satisfied, we cannot draw any conclusion regarding the 

equality of fxy and fyx. Thus the conditions are sufficient but not necessary. 

Example 4.2.9 Show that for the function  

  f(x, y) = 













)0,0()y,x(,0

)0,0()y,x(,
yx

yx
22

22

 

the conditions of Sujwarz’s Theroem and Young’s Theroem are not satisfied 

Solution. Here fxy(0, 0) = fyx(0, 0) since 

  fx(0, 0) = 0
x

)0,0(f)0,x(f
lim

0x





 

Similarly, fy(0, 0) = 0.  

Also, for (x, y)  (0, 0). 

  fx(x, y) = 
222

4

222

22222

)yx(

xy2

)yx(

x2.yxxy2).yx(







 

  fy(x, y) = 
222

4

)yx(

yx2


 

Again  

  fyx(0, 0) = 
y

)0,0(f)y,0(f
lim xx

0y




 = 0   

and  

  fxy(0, 0) = 0, so that fxy(0, 0) = fyx(0, 0) 

For (x, y)  (0, 0), we have  

  fyx(x, y) = 
422

2242223

)yx(

)yx(y4.xy2)yx(xy8




 

     = 
322

33

)yx(

yx8


 

and it may be easily shown (by putting y = mx) that  
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)0,0()y,x(

lim


fyx(x, y)  0 = fyx(0, 0) 

so that fyx is not continuous at (0, 0), i.e., the conditions of Schwarz’s theorem are not satisfied.  

We  now show that the conditions of Young’s theorem are also not satisfied.  

  fxx(0, 0) = 
x

)0,0(f)0,x(f
lim xx

0x




 = 0 

Also fx is differentiable at (0, 0) if  

  fx(h, k)  fx(0, 0) = fxx(0, 0). H + fyx(0, 0). K + h + k 

or  

  
222

4

)kh(

hk2


 = h + k 

where ,  tend to zero as (h, k)  (0, 0). 

Putting  h =  cos  and k =  sin , and dividing by , we get 

  2 cos  sin
4
  = cos . + sin  

and (h, k)(0, 0) is same thing as 0 and  is arbitrary. Thus proceeding to limits, we get  

  2 cos  sin
4
 = 0 

which is impossible for arbitrary ,  

   fx is not differentiable at (0, 0) 

Similarly, it may be shown that fy is not differentiable at (0, 0). 

Thus the conditions of Young’s theorem are also not satisfied but, as shown above,  

  fxy(0, 0) = fyx(0, 0)  

Taylor’s Theorem 

Theorem 4.2.10 If f(x, y) is a function  possessing continuous partial derivatives of order n in 

any domain of a point (a, b),  then there exists a positive number, 0 < θ < 1, such that 

f(a+h, b+k) = f(a, b)+ 

















y
k

x
h f(a, b)  +

2

y
k

x
h

!2

1

















f(a, b)                                        

                                                 +…. +

1n

y
k

x
h

)!1n(

1





















 f (a, b) + Rn, 
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where  Rn  = 

n

y
k

x
h

!n

1

















 f (a + θh, b + θk), 0 < θ < 1. 

Proof. Let x = a + th, y = b + tk, where 0 ≤ t ≤ 1 is a parameter and 

    f (x , y) = f (a + th, b + tk) = (t) 

    Since the partial derivatives of f(x, y) of order n are continuous in the domain under 

consideration, 
x
 (t) is continuous in [0, 1]and also 

´ (t) = f
y

k
x

h
y

f
k

x

f
h

dt

dy

y

f

dt

dx

x

f

dt

df





































  

´´ (t) = f
y

k
x

h

n


















 


(n) 

(t) = 

n

y
k

x
h 

















 f 

therefore by Maclaurin’s theorem 

 (t) =  (0) + t
’
(0) + ),tθ(φ

n

t
)0(φ

)!1n(

t
....)0(φ

!2

t )n(
n

)1n(
1n

"
2




 


 

where  0 < θ < 1. 

   Now putting t = 1, we get 

(1) = (0) + 
´
(0)+

!2

1


´´
 (0)+…+ )0(φ

!n

t
)0(φ

)!1n(

t )n(
n

)1n(
1n







 

But (1) = f (a + h, b + k), and  (0) = (a, b) 

      
´
(0) = 


















y
k

x
h   f (a, b) 

      
´´
(0) = 

2

y
k

x
h 

















f (a, b) 

      
(n)

(θ) = 

n

y
k

x
h 

















f (a + θh, b + θk) 

       f(a + h, b + k) = f (a, b) + 

















y
k

x
h f (a, b) 
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                                     +

2

y
k

x
h

!2

1

















f (a, b) +….. 

                                     +

1n

y
k

x
h

)!1n(

1





















f (a, b) + Rn, 

where Rn = 

n

y
k

x
h

!n

1

















f (a + θh, b + θk), 0 < θ < 1. 

 Rn is called the remainder after n terms and theorem, Taylor’s theorem with remainder or 

Taylor’s expansion about the point (a, b) 

    If we put a = b = 0; h = x, k = y, we get 

        f(x, y) = f (0, 0) + 

















y
k

x
h f (0, 0) 

                            +

2

y
y

x
x

!2

1

















f (0, 0) +…. 

                            +

1n

y
y

x
x

)!1n(

1





















f (0, 0) + Rn 

Where Rn = 
!n

1
n

y
y

x
x 

















f(θx, θy), 0 < θ < 1. 

    

Note.   This theorem can be stated in another from, 

          f (x, y) = f (a, b) +   


















y
)by(

x
ax f (a, b) 

                           
2

y
by

x
ax

!2

1

















 f(a, b) +… 

                        +    
1n

y
by

x
ax

)!1n(

1






















f(a, b) + Rn, 

where Rn =    
n

y
by

x
ax

!n

1

















 f (a + (x a) θ, b + (y  b) θ), 
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0 < θ < 1. It is called the Taylor’s expansion of f (x, y) about the point (a, b) in powers of x  

a and y  b, 

Example 4.2.11 Expand x
2
y + 3y  2 in powers of x – 1and y + 2.In  Taylor’s expansion 

take a = 1, b =  2. Then                   

       f(x, y) = x
2
y + 3y – 2,    f(1, 2) =  10 

       fx(x, y) = 2xy,                fx(1, 2) =  4 

      fy(x, y) = x
2 
+ 3,     fy(1, 2) = 4 

      fxx(x, y) = 2y,     fxx(1, 2) = 4 

  fxy(x, y) = 2x ,     fxy(1, 2) = 2 

  fyy(x, y) = 0,      fyy(1, 2) = 0 

  fxxx(x, y) = 0 = fyyy(x, y),  fyxx(1, 2) = 2 = fxxy(1,  2) 

All higher derivatives are zero. 

   x
2
y + 3y – 2 =  2 =  10 – 4 (x  1) + 4 (y + 2) +

2
1 [4 (x  1)

2
 

                              +4 (x  1) (y + 2)] + 
!3

1
 3 (x  1)

2 
(y + 2) (2) + 0 

                             =  10 – 4 (x  1) + 4 (y + 2) – 2 (x  1)
2
 

                + 2 (x  1) (y + 2) + (x  1)
2 

(y + 2) 

Example 4.2.12 If f(x, y) = || xy prove that Taylor’s expansion about the point (x, y) is not 

valid in any domain which includes the origin.  

  Solution.  

 fx(x, y) = 0 = fy (0, 0) 

 fx(x, y) = 














0,|\|
2

1

0,|\|
2

1

xxy

xxy

 

 fx(x, y) = 














0y,|y\x|
2

1

0y,|y\x|
2

1
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 fx(x, x) = fy(x, x) = 














0x,
2

1

0x,
2

1

  

Now Taylor’s expansion about (x, x) for n = 1, is  

f(x + h, x + h) = f (x , x ) + h [(fx(x + θh, x + θh) + fy(x + θh, x + θh)] 

or 

 hx   = 














0hθxif,|x|

0hθxif,h|x|

0hθxif,h|x|

                                                             (1) 

     If the domain (x, x; x + h, x + h) includes the origin, then x and x + h must be of opposite 

signs, that is either  

 hx   = x + h, x  = x 

or 

      hx   =  (x + h), x  = x 

      But under these conditions none of the in equalities (1) holds. Hence the expansion is not 

valid. 

Definition 4.2.13 Let f be differentiable mapping of an open subset A of R
n
 into R

m
. Then f is 

said to be continuously differentiable in A if f  is a continuous mapping of A into L(R
n
, R

m
) and 

write  

  fC(A) 

To be precise f is a C mapping in A if to each xA and each  > 0, there exists  > 0 such that  

  yA, |yx| <      ||f(y)  f(x)|| < . 

The Inverse function theorem 

 This theorem asserts, roughly speaking that if f is a C mapping, then f is invertible in a 

neighbourhood of any point x at which the linear transformation f2(x) is invertible. 

Theorem 4.2.14 Suppose A is an open subset of R
n
, f is a C mapping of A into R

n
, f(a) is 

invertible for some aA and b = f(a). Then (i) there exists G and H in R
n
 such that 

  a  G, b  H. 
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f is one-one on G and f(G) = H. 

(ii) if g is the inverse of f (which exists by (i)) defined on H by  

  g(f(x)) = x (xG), 

then  gC(H).  

Proof. (i) Let f(a) = T let  be so chosen that  

  4 ||T
1

|| = 1. 

Since f is a continuous mapping of A into L(R
n
, R

m
), there exists an open ball G with centre a 

such that  

  x  G       ||f(x)  T|| < 2.     …(1) 

Suppose xG and x+h  G. Define  

  F(t) = f(x + th) t Th (0  t  1)    …(2) 

Since G is convex (see example 2 of  § 2, ch. 11), we have  

  x + th  G if 0  t  1.  

Also   |F(t)| = |f(x + th)h Th| = [|f(x + th) T | h] 

     ||f(x +th) T|| |h| < 2 |h| by  (1)    …(3) 

Since T is invertible, we have  

  |h| = |T
1

 Th|  ||T
1

|| |Th| = 
λ4

1
f| Th|    …(4)  

       [ 4 ||T
1

|| = 1] 

From (3) and (4), we have  

  |F(t)| < 
2
1  |Th|, (0  t  1|    (0  t  1)   …(5) 

Also, 

  |F(1)  F(0)|  (1  0) |F(t0)| for some t0  (0, 1) 

            
2
1  |Th| by (5)     …(6) 

Now (2) and (6) give  
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  |f(x +h) f(x)  Th|  
2
1  |Th|     …(7) 

Now  
2
1 |Th|  |Th (f(x + h) f(x))| 

              |Th|  |f(x +h)  f(x)| 

or  |f(x + h) f(x)|  
2
1  |Th|  2 |h| by (4)   …(8) 

Also, (7) and (8) hold whenever x  G and x + h  G. 

In particular, it follows from (8) that f is one-one on G. For if x, y  G, then  

  f(x) = f(y)     f(x)  f(y) = 0 

 0 = |f(x)  f(y)|  2 |x y| by (8) 

 |x  y| = 0 

[   2| x  y| cannot be negative] 

           x  y = 0  x = y. 

 We now prove that f[G] is an open subset of R
n
. Let y0 be an arbitrary point of f[G]. 

Then y0 = f(x0) for some x0  G. Let S be an open ball with centre x0 and radius r > 0 such that 

S   G. Then (x0)  f[X]  f[G]. We shall show that f[S] contains the open ball with centre at 

f(x0) and radius r.  This will prove that f[G] contains a neighbourhood of f(x0) and this in turn 

will prove that f[G] is open.  

 Fix y so that |y  f(x0)| < r and define  

   (x) = |y f(x)| (x  S ). 

         |x  x0| = r, then (8) shows that  

  2r  |f(x)  f(x0)| = |f(x)  y + y  f(x0)| 

   |f(x)  y | + |y f(x0)| =  (x) + (x0) < (x0) + r 

This shows that  

  (x0) < r < (x) (|x x|) = r     …(9) 

Since  is continuous and S is compact, there exists x* S  such that  

  (x*) < (x) 0for x  S      …(10) 
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By (9), x* S. 

Put w = y (x*). Since T is invertible, there exists hR* such that Th = W. Let t  [0, 1) be 

chosen so small that  

  x* + th  S 

Then  |f( *

0
x )  y + Tth | = |w + tTh| 

        = |w + tw| = (1 t)| w |   …(11) 

Also (7) shows that 

  |f(x* + th)  f(x*)  Tth|  
2
1 |Tth| 

         = 
2
1 |tTh|

2
1 |tw|.   …(12) 

Now (x* + th) = |yf(x* +th)| = |f(x* + th) y| 

    = |f(x* + th)  f(x*)  Tth + f(x*)  y + Tth| 

     |f(x* + th) f)(x*)  Tth |+| f(x*)  y + Tth| 

     (1  t) | w | + 
2
1  |tw| by (1) and (12) 

    = (1 
2
1 t)| w | = (1 

2
1 t)  (x*)    …(13) 

Definition of  shows that (x)  0. We claim that (x)  0. We claim that (x*) > 0 ruled out. 

For if (x*) > 0, then (13) shows that  

  (x* + th)) < (x*), since 0 < t < 1. 

But this contradicts (10). Hence we must have (x*) = 0 which implies that f(x*) = y so that y  

f[S] since x*  S. This shows that the open sphere with centre at f(x0) and radius r is contained 

in f(S). 

 We have thus proved that every point of f[G] has a neighbourhood contained in f[G] and 

consequently f[G] is an open-subset of R
n
 By setting H = f[G], part (i) of the theorem is proved.  

(ii)  Take y  H, y + k   H and put  

  x = g(y), h = g(y + k)  g(y) 

By hypothesis, T = f(a)’s invertible and f(x)  L (R
n
). Also by (1). 
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  ||f(x)  T|| < 2 < 4 = 
||T||

1
1

 (see the choice of ) 

Hence , f(x) has an inverse, say U 

Now  k = f(x + h)  f(x) = f(x) h + r(h)    …(14) 

where     |r(h)| / |h|  0 as h0   . 

Applying U to (14), we obtain  

  Uk = U(f(x) h + r(h)) = Uf(x)h + Ur(h) = h + Ur(h) 

    [ U is the inverse of f(x) implies Uf(x) h = h] 

or     h = Uk  U(r(h)) 

or   g(y + k)  g(y) = Uk  U(r(h))   …(15) 

By (8),  2 |h|  |k|. Hence h0 if k 0 

    (which shows, incidentally, that g is continuous at y), 

and  
|h|λ2

|)h(r|||U||

|k|

|))h(r(U|
  0 as k0    …(16) 

Comparing (15) and (16), we see that g is differentiable at y and that  

  g(y) = U = [f(x)]
1

 = [f(g(y))]
1

,   (y  H)   …(17) 

Also g is a continuous mapping of H onto G, f is continuous mapping of G into the set C of all 

invertible elements of L(R
n
), and inversion is a continuous mapping of C  onto C , These facts 

combined with (17) imply that gC(H). 

 

The Implicit Functions Theorem 

Theorem 4.2.15 Existence theorem (Case of two variables) 

Let f(x, y) be a function of two variables x and y and let (a,b) be a point in its domain of 

definition such that  

(i) f(a, b) = 0   the partial derivatives fx and fy exist, and are continuous in a certain 

neighbourhood of (a, b) and 

(ii) fy(a, b)  0, 
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then there exists a rectangle (a  h, a + h; b  k, b + k) about (a, b) such that for every value of x 

in the interval [a  h, a + h], the equation f(x, y) = 0 determines one and only one value y = 

(x), lying in the interval  [b  k, b + k], with the following properties: 

(1) b = (a), 

(2) f[x, (x)] = 0, for every x in [a  h, a + h], and 

(3) (x) is derivable, and both (x) and 
´
(x) are continuous in [a  h, a + h]. 

Proof. (Existence). Let fx, fy be continuous in a neighbourhood  

  R1: (a  h1, a + h1; b  k1, b + k1)  of (a, b) 

 Since fx, fy exist and are continuous in R1, therefore f is differentiable and hence 

continuous in R1. 

Again, since fy is continuous, and fy(a, b)  0, there exists a rectangle  

 R2:(a  h2,a + h2;b  k2,b + k2), h2<h1,k2<k1 

(R2 contained in R1) such that for every point of this rectangle, fy   0 

 Since f = 0 and fy  0(it is therefore either positive or negative) at the point   (a, b), a 

positive number k<k2 can be found such that 

 f(a, b  k), (a, b + k) 

are of opposite signs, for, f is either an increasing or a decreasing function of y, when y = b. 

 Again, since f is continuous, a positive number h<h2 can be found such that for all x in [a 

 h, a + h], 

 f(x, b  k), f(x, b + k), 

respectively, may be as near as we please to f(a, b  k), f(a, b + k) and therefore have opposite 

signs. 

 Thus, for all x in [a  h, a + h], f is a continuous function of y and changes sign as y 

changes from b  k to b + k. therefore it vanishes for some y in [b  k, b + k]. 

 Thus, for each x in [a  h, a + h], there is a y in [b  k, b + k] for which f(x, y) = 0; this y 

is a function of x, say (x) such that properties (1) and (2) are true. 

Uniqueness. We, now, show that y = (x) is a unique solution of f(x, y) = 0 in R3: (a  h, a + h; 

b  k, b + k); that is f(x, y) cannot be zero for more than one value of y in [b  k, b + k]. 
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 Let, if possible, there be two such values y1,y2 in [b  k, b + k] so that          f(x, y1) = 0, 

f(x, y2) = 0. Also f(x, y) considered as a function of a single variable y is derivable in [b  k, b + 

k], so that by Roll’s theorem, fy = 0 for a value of y between y1 and y2, which contradicts the 

fact that fy  0 in R2  R3. hence our supposition is wrong and there cannot be more than one 

such y. 

Let (x, y), (x + x, y + y) be two points in R3: (a  h, a + h; b  k, b + k) such that  

 y = (x), y + y = (x + x) 

and 

 f(x, y) = 0, f(x + x, y + y) = 0 

 Since f is differentiable in R1 and consequently in R3 (contained in R1), 

        0 = f(x + x, y + y)  f(x, y) 

   = x fx +y fy + x 1 + y 2 

Where 1, 2 are functions of x and  y, and tend to 0 as 

 (x, y)(0,0) 

or 

 
y

2

y

1

y

x

f

ψ

xδ

yδ

f

ψ

f

f

xδ

yδ
       (fy  0 in R3) 

Proceeding to limits as (x, y)(0, 0), we get 

 ´(x) = 
y

x

f

f

dx

dy
  

 Thus (x) is derivable and hence continuous in R3. Also ´(x), being a quotient of two 

continuous functions, is itself continuous in R3. 

4.3 Check Your Progress  

Q.1 Define partial derivative and differentiability of function of two variables. 

Fill in the blanks. 

Q.2 Show that the function f, where  

  f(x, y) = 













0yxif,0

0yxif,
yx

xy 22

22  
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is continuous, possesses partial derivatives but is not differentiable at the origin. 

 Solution. It may be easily shown that f is continuous at the origin and 

  fx(0, 0) = 0 = fy(0, 0) 

If the function is differentiable at the origin then by definition  

  df = f(h, k)  f(0, 0) = Ah + Bk + h + k   …(1) 

where A = fx(0, 0) = 0; B = fy(0, 0) =………, and ,  tend to zero as (h, k)  (0, 0). 

       
22 kh

hk


 = ………     …(2) 

Putting k = mh and letting h0, we get  

  
0h2

lim
m1

m





( + m) = 0 

which is impossible for arbitrary m.  

 Hence the function is not differentiable at (0, 0). 

Q.3 Investigate the continuity at (1, 2) 

             
2 2 , ( , ) (1,2)

( )
0, ( , ) (1,2)

x y if x y
f x

if x y

  
 


 

Here, 
( , ) (1.2)

lim ( , ) ...... (1,2)
x y

f x y f


  , hence function is not continuous at (1,2). 

Q.4 Let f(x) = x, g(x) = x
2
. 

       Evaluate the integral 
1

0

fdg .  

   

Solution. Since f is continuous and g is non-increasing on [0, 1], it follows that 
1

0

fdg  exists. 

Now, we consider the partition 

  P = {0, 1/n, 2/n,…, r/n,…, n/n = 1} 

and the intermediate partition, Q = 








1
n

n
,...

n

2
,

n

1
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Then RS (P, Q, f, g) = 














 

















 n

1r
g

n

r
g

n

r
f

n

1r

 

           =  
 








 


r

1r

n

1r

2

22

2

2

2

)rr2(
n

1

n

)1r(

n

r

n

r
 

           =  
 


n

1r

n

1r
2

2

3
r

n

1
r

n

2
 

           = 
2

)1n(n
.

n

1

6

)1n2)(1n(n
.

n

2
23





 

           = 
2n6

1
[2(2n

2
 + 3n+1)  3n 3] = ……………… 

           = 









2n6

1

n2

1
4

6

1
 

Hence  

  




1

0
0||P||

limdgf  RS(P, Q, f, g) 

            = 
6

1

n6

1

n2

1
4

6

1
lim

2n












[4 + 0  0] =……..  

4.4 Summary 

The partial derivative is taken in to consider when a function depends on more than one 

variable for its values. Unlike the situation for a function of single variable, the existence of first 

derivative at a point does not guarantee that the function is continuous there at. If both the 

partial derivative exist and bounded in the region then the function f(x, y) will be continuous in 

that region. Also the existence of first order derivative at a point does not imply that the 

function is differentiable at that point. The sufficient condition for function f(x, y) to be 

differentiable is that both the first order partial derivative exists and one of them is continuous. 

It is not always is true that fxy = fyx. Bothe the theorem Young’s and Schwartz’s give sufficient 

condition for equality of fxy, and fyx. Finally, the lesson concluded with Inverse Function and 

Implicit Function theorem. 

 

4.5 Keywords 
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Function of more than one variable, Limit continuity of function of two or more variables, 

the concept of neighborhood system. 

 

4.6 Self-Assessment Test 

 

Q.1 Show that the function f(x, y) = |x| + |y|, is continuous but not differentiable at  

       origin. 

Q.2 Discuss the following functions for continuity and differentiability at the (0, 0).  

       {i} f(x, y) = 













0yxif,0

0yxif,
yx

xy 22

22  

       {ii} f(x, y) =  
1

sin , 0, (0, )y if x f y y
x

  . 

 

Q.3 Verify that fxy = fyx for functions: 

        {i} 
2x y

x y




               {ii} tanx xy        {ii} cosh( cos )y x     {iv} yx . 

Q.4 Find the expansion of sin x  sin y  about (0, 0) up to including the terms of fourth  

       degree in (x, y). Compare the result that you get by multiplying the series for  

       sin x  and sin y . 

 

4.7 Answers to check your progress  
A.1  Read 4.2 and definition 4.2.2. 

A.2  0, h + k  

A.3  5 

A.4  
2

2

n6

1n3n4 
, 

3

2
 

4.8 References/ Suggested Readings 

1. W. Rudin, Principles of Mathematical Analysis (3rd edition) McGraw-Hill,  



Real Analysis  MAL-512 

DDE, GJUS&T, Hisar  94 |  

 

 

   Kogakusha,1976, International student edition. 

2. T.M.Apostol, Mathematical Analysis, Narosa Publishing House, New  

    Delhi,1985. 

3. R.R. Goldberg, Methods of Real Analysis, John Wiley and Sons, Inc., New  

   York, 1976. 

4. S.C. Malik and Savita Arora, Mathematical Analysis, New Age international  

    Publisher, 5
th

 edition, 2017. 

5. H.L.Royden, Real Analysis, Macmillan Pub. Co. Inc. 4th Edition, New York,  

   1993. 

6. S.K. Mapa, Introduction to real Analysis, Sarat Book Distributer, Kolkata. 4
th

 edition 

2018.  

 



Real Analysis  MAL-512 

DDE, GJUS&T, Hisar  95 |  

 

 

MAL-512: M. Sc. Mathematics (Real Analysis) 

Lesson No. V                                                               Written by Dr. Vizender Singh 

 

Lesson: Jacobians and Extreme Value Problems   

Structure: 
                     5.0   Learning Objectives 

5.1   Introduction 

5.2   Jacobians 

5.3   Extreme Value Problems   

5.4   Check Your Progress 

5.5   Summary 

5.6   Keywords 

5.7   Self-Assessment Test  

5.8   Answers to check your progress  

5.9   References/ Suggested Readings 

 

5.0 Learning Objective 

 The learning objectives of this lesson are to study concept of Jacobian determinants 

due to its vast application in vector calculus, differential equation and complex 

analysis etc.  

 To study the how one can transform coordinate and change variable or find functional 

relation between variable. 

 To study necessary and sufficient condition for existence of extreme values for 

function of two or more variable. 

 To determine the stationary points from modified point of view using Lagrange’s 

method. 

5.1 Introduction 
 Jacobians have the remarkable property of behaving like the derivatives of functions of 

one variable. Some important relations are given here in this lesson and the proofs depend upon 

the algebra of determinants. Foe n = 1, the determinant is simply y
x


   or dy/dx, the derivative of 
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y with respect to x; the first of notations for Jacobian is suggested by a certain analogy between 

the properties of Jacobian and derivative. 

 For a function y = f(x) of a single variable, a stationary (or critical) point is a point at 

which dy/dx = 0; for a function u = f(x1, x2, ... , xn) of n variables it is a point at which 

                                       
1

u

x




= 0, 

2

u

x




= 0, …. , 

n

u

x




= 0. 

In the case of a function y = f(x) of a single variable, a stationary point corresponds to a 

point on the curve at which the tangent to the curve is horizontal. In the case of a function y = 

f(x, y) of two variables a stationary point corresponds to a point on the surface at which the 

tangent plane to the surface is horizontal. 

  In the case of a function y = f(x) of a single variable, a stationary point can be any of the 

following three: a maximum point, a minimum point or an inflection point. For a function y = 

f(x, y) of two variables, a stationary point can be a maximum point, a minimum point or a 

saddle point. For a function of n variables it can be a maximum point, a minimum point or a 

point that is analogous to an inflection or saddle point. 

5.2 Jacobians  

Definition 5.2.0 If u1, u2,..., un be n differentiable functions of n variables x1, x2,…,xn, then the 

determinant 

1 1 1

1 2

2 2 2

1 2

1 2

n

n

n n n

n

u u u

x x x

u u u

x x x

u u u

x x x

  

  

  

  

  

  

 

is called the Jacobian of the functions u1, u2,…,un with respect to x1, x2,…,xn and denoted by 

 
 
  













n21

n21

n21

n21

x,...,x,x

u,...,u,u
Jor

x,...,x,x

u,...,u,u
. 

Note: If u1, u2,..., un be n differentiable functions of form u1 = f( x1), u1 = f(x1, x2), …, un = f( x1, 

x2, …, xn), the 
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1 2

1 2

, ,...,

, ,...,

n

n

u u u

x x x




= 

1

1

2 2

1 2

1 2

0 0

0

n n n

n

u

x

u u

x x

u u u

x x x





 

 

  

  

= 1

1

u

x




. 2

2

u

x




.  ….  . n

n

u

x




. 

Therefore in this case the jacobian reduces to leading terms. 

Theorem 5.2.1 If u1, u2,..., un be n differentiable functions of n variables y1, y2,…,yn, and y1, 

y2,…,yn are functions of x1, x2, …, xn, then 

 

 
1 2

1 2

, ,...,

, ,...,

n

n

u u u

x x x




= 

 

 
1 2

1 2

, ,...,

, ,...,

n

n

u u u

y y y




. 

 

 
1 2

1 2

, ,...,

, ,...,

n

n

y y y

x x x




  

Proof. Here, we have u1, u2,..., un be n functions of n variables y1, y2,…,yn, which are further 

functions x1, x2, …, xn. 

  u1, u2,..., un are composite functions of x1, x2, …, xn, by definition of composite function 

1 1 1 2 2

11 1 1 2 1 1 1

1 1 1 2 2

12 1 2 2 2 2 2

. . ... . .

. . ... . .

..........................................................

n
n n r r

rn r

n
n n r r

rn r

u yu u y u y u y

x y x y x y x y x

u yu u y u y u y

x y x y x y x y x





       
    

        

       
    

        





1 1 1 2 2

11 2

............................

. . ... . .
n

n n r r

rn n n n n r n

u yu u y u y u y

x y x y x y x y x

       
    

        


 

Now 

 

 
1 2

1 2

, ,...,

, ,...,

n

n

u u u

y y y




.

 

 
1 2

1 2

, ,...,

, ,...,

n

n

y y y

x x x




= 

1 1 1 1 1 1

1 2 1 2

2 2 2 2 2 2

1 2 1 2

1 2 1 2

.

n n

n n

n n n n n

n n

u u u y y y

y y y x x x

u u u y y y

y y y x x x

u u u y y yn

y y y x x x
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                                                     = 

1 1 1

1 1 11 2

2 2 2

1 1 11 2

1 1 11 2

. . .

. . .

. . .

n n n
r r r

r r rr r r n

n n n
r r r

r r rr r r n

n n n
n n nr r r

r r rr r r n

u y u y u y

y x y x y x

u y u y u y

y x y x y x

u u uy y y

y x y x y x

  

  

  

     

     

     

     

    

     

  

  

  

 

                                                     = 

1 1 1

1 2

2 2 2

1 2

1 2

n

n

n n n

n

u u u

x x x

u u u

x x x

u u u

x x x

  

  

  

  

  

  

= 
 

 
1 2

1 2

, ,...,

, ,...,

n

n

u u u

x x x




 

Theorem 5.2.2 Prove that 

 

 
1 2

1 2

, ,...,

, ,...,

n

n

y y y

x x x




.

 

 
1 2

1 2

, ,...,

, ,...,

n

n

x x x

y y y




= 1. 

Proof. Let y1 = f1( x1, x2, …, xn) 

                  y2 = f2( x1, x2, …, xn) 

                  …………………….. 

                  yn = fn( x1, x2, …, xn) 

Further, we can put up the relation in the form 

                  x1 = g1( x1, x2, …, xn) 

                  x2 = g2( x1, x2, …, xn) 

                  …………………….. 

                  xn = gn( x1, x2, …, xn). 

Therefore 
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1 1 1 2 1

1 1 2 1 1

1

1 1

1 1 1 2 1

1 2 2 2 2

1

1 2

1

. . ... . 1

. 1

. . ... . 0

. 0

.............................................................

n

n

n
r

r r

n

n

n
r

r r

xy x y x y

x y x y x y

y x

x y

xy x y x y

x y x y x y

y x

x y

y





    
   

     

 
 

 

    
   

     

 
 

 







1 1 2 1

1 2

1

1

. . ... . 0

. 0

n

n n n n

n
r

r r n

xx y x y

x y x y x y

y x

x y

   
   

     

 
 

 


 

Now 

 

          
 

 
1 2

1 2

, ,...,

, ,...,

n

n

y y y

x x x




.

 

 
1 2

1 2

, ,...,

, ,...,

n

n

x x x

y y y




 

           =

1 1 1 1 1 1

1 2 1 2

2 2 2 2 2 2

1 2 1 2

1 2 1 2

.

n n

n n

n n n n n

n n

y y y x x x

x x x y y y

y y y x x x

x x x y y y

y y y x x xn

x x x y y y

     

     

     

     

     

     

 

        =

1 1 1

1 1 11 2

2 2 2

1 1 11 2

1 1 11 2

. . .

. . .

. . .

n n n
r r r

r r rr r r n

n n n
r r r

r r rr r r n

n n n
n n nr r r

r r rr r r n

y x y x y x

x y x y x y

y x y x y x

x y x y x y

y y yx x x

x y x y x y
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Using the above results, we get 

        
 

 
1 2

1 2

, ,...,

, ,...,

n

n

y y y

x x x




.

 

 
1 2

1 2

, ,...,

, ,...,

n

n

x x x

y y y




= 

1 0 0

0 1 0

0 0 1

= 1. 

Jacobian of Implicit Function 

Theorem 5.2.3 If u1, u2, ... , un be n differentiable functions of n variables x1, x2, …,xn given by 

functional relations 

f1= (u1, u2, ... , un ; x1, x2, …,xn) = 0 

f2= (u1, u2, ... , un ; x1, x2, …,xn) = 0 

…………………………………… 

fn= (u1, u2, ... , un ; x1, x2, …,xn) = 0 

Then 

 

 
1 2

1 2

, ,...,

, ,...,

n

n

u u u

x x x




=  

 
 
 
 

1 2

1 2

1 2

1 2

, ,...,

, ,...,
1

, ,...,

, ,...,

n

n n

n

n

f f f

x x x

f f f

u u u










. 

Proof. Since,  

                                       f1 = (u1, u2, ... , un ; x1, x2, …,xn) = 0 

                                       f2 = (u1, u2, ... , un ; x1, x2, …,xn) = 0 

…………………………………… 

fn = (u1, u2, ... , un ; x1, x2, …,xn) = 0 

Differentiating, we get 

                                     

1 1 1 1 2 1

1 1 1 2 1 1

1 1 1 1 2 1

2 1 2 2 2 2

2 2 1

1 1

. . ... . 0,

. . ... . 0,

......................................................................

.

n

n

n

n

uf f u f u f

x u x u x u x

uf f u f u f
etc

x u x u x u x

f f u

x u

     
    

      

     
    

      

  


 

2 2 2

1 2 1 1

. ... . 0,n

n

uf u f
etc

x u x u x
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Now, 

 

 
1 2

1 2

, ,...,

, ,...,

n

n

f f f

u u u




. 

 

 
1 2

1 2

, ,...,

, ,...,

n

n

u u u

x x x




=

1 1 1 1 1

1 2 1 2

2 2 2 2 2 2

1 2 1 2

1 2 1 2

.

n n

n n

n n n n n n

n n

f f f u uu

u u u x x x

f f f u u u

u u u x x x

f f f u u u

u u u x x x

    

     

     

     

     

     

 

                                                     = 

1 1 1

1 1 11 2

2 2 2

1 1 11 2

1 1 11 2

. . .

. . .

. . .

n n n
r r r

r r rr r r n

n n n
r r r

r r rr r r n

n n n
n n nr r r

r r rr r r n

f u f u f u

u x u x u x

f u f u f u

u x u x u x

f f fu u u

u x u x u x

  

  

  

     

     

     

     

    

     

  

  

  

 

                                                     = 

1 1 1

1 2

2 2 2

1 2

1 2

n

n

n n n

n

f f f

x x x

f f f

x x x

f f f

x x x

  
  
  

  
  
  

  
  
  

=  
 

 
1 2

1 2

, ,...,
1 .

, ,...,

n n

n

f f f

x x x





 

Note: The above result is generalization of result 

                                

f

dy x
fdx

y



 




, 

Where x and y are related by the relation f(x, y) = 0. 

Theorem 5.2.4 Let If u1, u2, ... , un be n differentiable functions of n variables x1, x2, …,xn. In 

order that there may exist between these n functions a relation, 

                          F(u1, u2, ... , un) = 0. 
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It is necessary and sufficient that, 
 

 
1 2

1 2

, ,...,

, ,...,

n

n

u u u

x x x




= 0. 

Proof.  The condition is necessary 

If there exist between u1, u2, ... , un, a relation, then 

             F(u1, u2, ... , un) = 0.                                                                                       (1) 

Differentiating (1), we have 

             

1 2

1 1 2 1 1

1 2

1 2 2 2 2

1 2

1 1 2 1 1

. . ... . 0

. . ... . 0

............................................................

. . ... . 0

n

n

n

n

n

n

uu uF F F

u x u x u x

uu uF F F

u x u x u x

uu uF F F

u x u x u x

   
   

     

   
   

     

   
   

     

 

Eliminating, 
1

F

u




, 

2

F

u




,….,

n

F

u




, we get 

              

1 1 1

1 2

2 2 2

1 2

1 2

n

n

n n n

n

u u u

x x x

u u u

x x x

u u u

x x x

  

  

  

  

  

  

= 
 

 
1 2

1 2

, ,...,

, ,...,

n

n

u u u

x x x




= 0. 

The condition is sufficient 

If the Jacobian J(u1, u2, ... , un) = 
 

 
1 2

1 2

, ,...,

, ,...,

n

n

u u u

x x x




= 0. 

The equation connecting the functions u1, u2, ... , un and the variable x1, x2, …,xn van always be 

transferred in the following form: 

                  f1(x1, x2, …,xn, u1) = 0 

                  f2(x1, x2, …,xn, u1, u2) = 0 

                   ……………………. 



Real Analysis  MAL-512 

DDE, GJUS&T, Hisar  103 |  

 

 

                  fr(xr, xr+1, …,xn, u1, u2, u3, … ,un) = 0 

                   …………………… 

                  fn(xn, u1, u2, u3, … ,un) = 0 

Since, we know that 

                  J = 
 

 
1 2

1 2

, ,...,

, ,...,

n

n

u u u

x x x




=  

 
 
 
 

1 2

1 2

1 2

1 2

, ,...,

, ,...,
1

, ,...,

, ,...,

n

n n

n

n

f f f

x x x

f f f

u u u










 

Now, if J = 0, we get 

                  
 

 
1 2

1 2

, ,...,

, ,...,

n

n

f f f

x x x




= 0, i.e., r

r

f

x




= 0 for some r between 1 and n. 

Hence, for that particular value of r the function fr must no contain xr. 

Accordingly, the corresponding equation is of form 

                   fr( xr+1, …,xn, u1, u2, u3, … ,ur) = 0 

Consequently between this and the remaining equations 

                       fr+1 = 0, fr+r = 0, …., fn = 0. 

The variable xr+1 = 0, xr+2 = 0, …, xn can be eliminated so as to give e final equation between u1, 

u2, u3, … ,ur alone. 

Example 5.2.5 If x = r sinθ cos, y = r sinθ sin, z = r cosθ, then show that 

              
 
 φ,θ,r

z,y,x




 = r

2
sinθ  

Solution. Here, we have  

               
 
 φ,θ,r

z,y,x




 =

0θsinrθcos

φcosθsinrφsinθcosrφsinθsin

φsinθsinrφcosθcosrφcosθsin





 

           = r
2
sinθ

0sincos

cossincossinsin

sincoscoscossin











 

Applying R2 = (cos) R1+ (sin) R2, we get 
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      = 
φsin

θsinr 2

0θsinθcos

0θcosθsin

φsinφcosθcosφcosθsin





 

      = r
2
sinθ 

Example 5.2.6 If u = 
z

zyx
wand,

y

zyx
v,

x

zyx 222222222 






, find             

                           
)w,v,u(

)z,y,x(




. 

Solution. Here, we have 

 

2

22

2

22

2

22

z

yx
1

z

y2

z

x2

y

z2

y

zx
1

y

x2

x

z2

x

y2

x

zy
1

)z,y,x(

)w,v,u(














 

Applying C1  C1 + 
x

z
C

x

y
2  C3, 

 

2

22222

2

22222

2

222

1
2

2
1

22

),,(

),,(

z

yx

z

y

xz

zyx

y

z

y

zx

xy

zyx
x

z

x

y

x

zyx

zyx

wvu

















 

       = 

)yx(
z

x
xzyz21

xz2)zx(
y

x
xy1

xz2xy21

xz.xy.x

)zyx(

22

22

2

222
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       = 

)zyx(
z

x
00

0
y

)zyx(x
0

xz2xy21

yzx

)zyx(

222

222

4

222







 

       = 
222

3222

zyx

)zyx( 
 

 
3222

222

)zyx(

zyx

)w,v,y(

)z,y,x(







 

Example 5.2.7 If given, u = x + 2y + z, v = x  2y + 3z, w = 2xy  xz + 4yz  2z
2
, 

then, prove that 
)z,y,x(

)w,v,u(




 = 0, and also find a relation between u, v, w. 

Solution. We have  

 

z

w

y

w

x

w

z

v

y

v

x

v

z

u

y

u

x

u

)z,y,x(

)w,v,u(









































 

       = 

z4y4xz4x2zy2

121

121



  

       = 

z3y2xy4z6x2zy2

241

001



  (Performing C22C1 and C3 C1) 

       = 
zyxzyxzyx 320

20

32462

24







 (Performing C1+2C2) 

Hence a relation between u, v and w exists 

Now,  

  u - v = 2x + 4z 
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  u  v = 4y  2z 

  w = x(2y z) + 2z(2y  z) 

      = (x +2z) (2y z) 

  4w = (u + v) ( u  v) 

  4w = u
2
  v

2
 

Which is the required relation? 

Example 5.2.8 Find the condition that the expressions px + qy + rz, px + qy + rz are 

connected with the expression ax
2
 + by

2
 + cz

2
 + 2fyz + 2gzx + 2hxy, by a functional relation.  

Solution. Let 

  u = px + qy + rz 

  v = p + qy + rz 

  w = ax
2
 + by

2
 + cz

2
 + 2fyz + 2gzx + 2hxy 

We know that the required condition is  

  0
)z,y,x(

)w,v,u(





 

Therefore, 

  0

z

w

y

w

x

w

z

v

y

v

x

v

z

u

y

u

x

u







































 

But 

  r
z

u
,q

y

u
,p

x

u















 

  'r
z

v
,'q

y

y
'p

x

v















 

  
x

w




 = 2ax + 2hy + 2gz 
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y

w




 = 2hx + 2by + 2fz 

  
z

w




 = 2gx + 2fy + 2cz 

Therefore 

  

czfygxfzbyhxgzhyax

rqp

rqp

222222222

'''



 

  

cfg

'r'q'p

rqp

,0

fbh

'r'q'p

rqp

,0

gha

'r'q'p

rqp

  = 0 

Which is the required condition? 

Example 5.2.9 Prove that if f(0) = 0, f(x) = 
2x1

1


, then  

  f(x) + f(y) = f 












xy1

yx
. 

Solution. Suppose that  

  u = f(x) + f(y) 

  v = 
xy1

yx




 

Now     J(u, v) = 

u u

x y

v v

x y

 

 

 

 

 

     = 0

)xy1(

x1

)xy1(

y1

y1

1

x1

1

2

2

2

2

22












  

Therefore u and v are connected by a functional relation 

Let,  u = (v), that is,  
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             f(x) + f(y) =  












xy1

yx
 

Putting y = 0, we get 

  f(x) + f(0) = (x) 

  f(x) + 0 = (x)     f(0) = 0 

Hence  f(x) + f(y) = f 












xy1

yx
 

Example 5.2.10 Prove that the three functions U, V, W are connected by an identical functional 

relation if  

  U = x + y  z, V = x  y + z, W = x
2
 + y

2
 + z

2
  2yz 

and find the functional relation.  

Solution. Here 

  

1 1 1
( , , )

1 1 1
( , , )

2 2( ) 2( )

U U U

x y z

U V W V V V

x y z x y z
x y z z y

W W W

x y z

  

  


   
  

   
 

  

  

 

          = 0

0)zy(2x2

011

011





  

Hence there exists some functional relation between U, V and W. 

Moreover,  

  U + V = 2x 

  U  V = 2(y z) 

and   (U + V)
2
 + (U  V)

2
 = 4(x

2
 + y

2
 + z

2
  2yz) 

             = 4W 

Which is the required functional relation. 
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Example 5.2.11 If u = x
2
 + y

2
 + z

2
, v = x + y + z, w = xy + yz + zx, show that the Jacobian 

)z,y,x(

)w,v,u(




 vanishes identically.  

Solution. 

yxxzzy

111

z2y2x2

)z,y,x(

)w,v,u(







 

           = 2

yxxzzx

111

zyx



 

           = 2 

yxxzzy

111

zyxzyxzyx





 [Adding R3 to R1] 

          = 2(x + y + z) 

yxxzzy

111

111



 

Now, we find relation between u, v, w. We have  

  v
2
 = (x + y + z)

2
 = x

2
 + y

2
 + z

2
 + 2(xy + yz + zx) = u + 2w 

or  v
2
 = u + 2w. 

5.3 Extreme Values: Maxima Minima 

  Let (a, b) be a point of the domain of definition of a function f. The f (a, b) is an extreme 

value of f, if for every point (x, y) of some neighborhood of (a, b), the difference f(x, y) - f(a, b) 

keeps the same sign.                                                                                                                 (1)                                                      

The extreme value f (a, b) is called a maximum or minimum value according as the sign of (1) 

is negative or positive. 

A Necessary Condition 

A necessary condition for f(x, y) to have an extreme value at (a, b) is that  

                             fx(a, b) = 0, fy(a, b) = 0;  

Provided these partial derivatives exist. Points at which fx = 0, fy = 0 are called Stationary 

points. 

Sufficient Conditions for f(x, y) to have extreme value at (a, b) 
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Let fx(a, b) = 0 = fy(a, b). Further, let us suppose that f(x, y) possesses continuous second order 

partial derivatives in a neighborhood of (a, b) and that these derivatives at (a, b) viz. fxx(a, b), 

fxy(a, b), fyy(a, b) are not all zero. 

Let (a + h, b+ k) be a point of this neighborhood. 

Let us write 

 r = fxx(a, b), s = fxy(a, b), t  = fyy(a, b)  

(1) If rs  t
2 

> 0, then f(a, b) is a maximum value if r < 0, and a minimum value if    

 r > 0. 

(2) If rt  s
2 

< 0, f(a, b) is not an extreme value. 

(3)  If rt s
2
 = 0, 

Thus is the doubtful case and requires further investigation. 

Example 5.3.1 Find the maxima and minima of the function 

              f(x, y) = x
3 
+ y

3
  3x  12y + 20 

Solution. We have 

 fx(x, y) = 3y
2 
 3 = 0, when x =  1 

 fy(x, y) = 3y
2
  12 = 0, when y =  2 

Thus the function has four stationary points: 

 (1, 2), (1, 2), (1, 2), (1, 2), 

Now 

 fxx(x, y) = 6x, fxy(x, y) = 0, fyy(x, y) = 6y 

At (1, 2), 

 fxx = 6 > 0, and fxxfyy (fxy)
2
 = 72 > 0 

Hence (1, 2) is a point of minima of the function. 

At (1, 2), 

 fxx = 6, and fxxfyy  (fxy)
2
 = 72 < 0 

Hence the function has neither maximum nor minimum at (1, 2). 

At (1, 2), 

 fxx = 6, and fxxfyy  (fxy)
2
 = 72 > 0 
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Hence the function has a maximum value at (1, 2). 

Note: Stationary points like (1, 2), (1, 2) which are not extreme points are called the saddle 

points. 

Example 5.3.2 Show that the function 

 f(x, y) = 2x
4
  3x

2
y + y

2
 

has neither a maximum nor minimum at (0, 0) where 

 fxxfyy  (fxy)
2
 = 0 

Now 

 fx(x, y) = 8x
3
  6xy, fy(x, y) = 3x

2 
+ 2y 

 fx(0, 0) = 0 =fy(0, 0) 

Also 

 fxx(x, y) = 24x
2
  6y = 0, at (0, 0) 

 fxy(x, y) = 6x = 0 at (0, 0) 

 fyy(x, y) = 2, at (0, 0) 

Thus at (0, 0), fxx(0, 0).fyy(0, 0)  [fxy(0, 0)]
2
 = 0. 

So that it is a doubtful case, and so requires further examination. 

Again 

 f(x, y) = (x
2
  y)(2x

2
  y), f(0, 0) = 0 

or 

f(x, y)  f(0, 0) = (x
2
  y) (2x

2
  y) 

> 0, for y < 0 or x
2 

> y > 0 

< 0, for y > x
2 
>

2

y
> 0 

 Thus f(x, y)  f(0, 0) does not keep the same sign near the origin. Hence f has neither a 

maximum nor minimum value at the origin. 

Example 5.3.3 Show that 

 f(x, y) = y
2
 + x

2
y + x

4
, has a minimum at (0, 0). 

     It can be easily verified that the origin. 
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 fx = 0, fy = 0, fxx = 0, fxy = 0, fyy = 2. 

 Thus at the origin fxxfyy  (fxy)
2
 = 0, so that it is a doubtful case and requires further 

investigation. 

      But we can write  

 f(x, y) = 422 x
4

3
)x

2

1
y(   

and 

 f(x, y) f(0, 0) = 422 x
4

3
)x

2

1
y(   

which is greater than zero for all values of (x, y). Hence f has a minimum value at the origin. 

Example 5.3.4 Show then 

  f(x, y) = y
2
 + x

2
 y + x

4
, has a minimum at 10,0 

It can be verified that  

  fx(0, 0) = 0, fy(0, 0) = 0 

  fxx(0, 0) = 0, fyy(0, 0) = 2 

  fxy(0, 0) = 0. 

So, at the origin we have  

  fxxfyy - 
2
xyf  = 0 so that it is a doubtful case 

However, on writing  

  y
2
 + x

2
y + x

4
 = 

4

x3
x

2

1
y

42
2 







  

It is clear that f(x, y) has a minimum value at the origin, since  

  f = f(h, k)  f(0, 0) = 
4

h3

2

h
k

4
2

2















  

is greater than zero for all values of h and k.  

Lagrange’s Undetermined Multipliers  

To find the stationary points of the function  

 f(x1, x2,…, xn, u1, u2,…, um)               …(1) 
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of n + m variables which are connected by the equations  

 r(x1, x2,…, xn, u1, u2,…,um) = 0, r = 1, 2,…, m            …(2) 

For stationary values, df = 0 

 0 = df = n

n

2

2

1

1

dx
x

f
...dx

x

f
dx

x

f














 

       + 
m

1

1 du

df
...du

u

f





dum             …(3) 

Differentiating equations (2), we get  

 













































































0du
u

φ
...du

u

φ
dx

x

φ
...dx

x

φ

0du
u

φ
...du

u

φ
dx

x

φ
...dx

x

φ

0du
u

φ
...du

u

φ
dx

x

φ
...dx

x

φ

m

m

m
1

1

m
n

n

m
1

1

m

m

m

2
1

1

2
n

n

2
1

1

2

m

m

1
1

1

1
n

n

1
1

1

1



  …(4) 

Multiplying the equations (4) by 1, 2,…, m respectively and adding to the equation (3), we 

get  

 0 = df = n

n

r
r

n

1

1

r
r

1

dx
x

φ
λΣ

x

f
...dx

x

φ
λΣ

x

f



































 

    + 



































m

r
r

m

1

1

r
r

1 u

φ
λΣ

u

f
...du

u

φ
λΣ

u

f
dum  …(5) 

 Let the m multipliers 1, 2,…, m be so chosen that the coefficients of the m 

differentials du1, du2,…, dum all vanish, i.e.,  

  0
u

φ
λΣ

u

f
,...,0

u

φ
λΣ

u

f

m

r
r

m1

r
r

1




















   …(6) 

Then (5) becomes  

  0 = df = n

n

r
r

n

1

1

r
r

1

dx
x

φ
λΣ

x

f
...dx

x

φ
λΣ

x

f



































 

so that the differential df is expressed in terms of the differentials of independent variables only. 

Hence  
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  0
x

φ
λΣ

x

f
,....,0

x

φ
λΣ

x

f

n

r
r

n1

r
r

1




















   …(7) 

 Equations (2), (6), (7) form a system of n + 2m equations which may be simultaneously 

solved to determine the m multipliers 1, 2,…, m and the n + m coordinates x1, x2,…, xn, u1, 

u2,…, um of the stationary points of f.  

An Important Rule: For practical purposes,  

 Define a function  

  F = f+ 11 + 22 +…+ mm 

At a stationary point of F, dF = 0. Therefore  

  0 = dF = 1

1

n

n

2

2

1

1

du
u

F
dx

x

F
...dx

x

F
dx

x

F



















+…+

mu

F




dum 

 
1 1

0,..., 0, 0,..., 0
n m

F F F F

x x u u

   
   

   
 

which are same as equations (7) and (6). 

 Thus the stationary points of f may be found by determining the stationary points of the 

function F, where 

  F = f + 11 + 22 +…+ mm 

and considering all the variables as independent variables.  

 A stationary point will be an extreme point of f if d
2
F keeps the same sign, and will be a 

maxima or minima according as d
2
F is negative or positive.  

Example 5.3.5 Find the shortest distance from the origin to the hyperbola  

  x
2
 + 8xy + 7y

2
 = 225, z=0 

Solution. We have to find the minimum value of x
2
 + y

2
 subject to the constraint  

  x
2
 + 8xy + 7y

2
 = 225 

Consider the function  

  F = x
2
 + y

2
 + (x

2
 + 8xy + 7y

2
  225) 

where x, y are independent variables and  a constant.  

  dF = (2x + 2x + 8y) dx + (2y + 8x + 14y)dy 
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0y)λ71(xλ4

0yλ4x)λ1(
     = 1, 

9

1
  

For  = 1, x = 2y, and substitution in x
2
 + 8xy + 7y

2
 = 225, gives y

2
 = 45, for which no 

real solution exists.  

 For  =  9
1 , y = 2x and substitution in x

2
 + 8xy + 7y

2
 = 225, gives x

2
 = 5, y

2
 = 20, and 

so x
2
 + y

2
 = 25.  

  d
2
F = 2(1 + ) dx

2
 + 16 dx dy + 2(1 + 7) dy

2
 

         = 9
1λat,dy

9
4dydx9

16dx9
16 22   

         = 9
4 (2dx  dy)

2
 

         > 0, and cannot vanish because (dx, dy)  (0, 0). 

Hence the function x
2
 + y

2
 has a minimum value 25. 

Example 5.3.6 Find the maximum and minimum values of x
2
 + y

2
 + z

2
 subject to the conditions 

25

z

5

y

4

x 222

  = 1, and z = x + y. 

Solution. Let us consider a function F of independent variables x, y, z where  

  F = x
2
 + y

2
 + z

2
 + 1 













 1

25

z

5

y

4

x 222

 + 2 (x + y  z)   

 dF = dyλλ
5

y2
y2dxλλ

2

x
x2 2121 

















  + 








 21 λλ

25

z2
z2 dz 

As x, y, z are independent variables, we get  

  2x + 
2

x
1 + 2 = 0 

  2y + 
5

y2
1 + 2 = 0 

  2z + 
25

z2
1  2 = 0 
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 x = 
502

25
,

102

5
,

4

2

1

2

1

2

1

2













z
zy










 

Substituting in x + y = z, we get  

  
50λ2

25

10λ2

5

4λ

2

111 






 = 0,   2  0   …(1) 

for if, 2 = 0, x = y = z = 0, but (0, 0, 0) does not satisfy the other condition of constraint.  

 Hence from (1), 1
2
1 λ245λ17   + 750 = 0, so that 1 = 10, 75/17. 

For 1 = 10, 

  x = 222 λz,λy,λ
6

5

2

1
3
1   

Substituting in ,1
25

z

5

y

4

x 222

  we get  

  19/56λor19/180λ 2
2
2   

The corresponding stationary points are  

  )19/55,19/53,19/52(),19/55,19/53,19/52(   

The value of x
2
 + y

2
 + z

2
 corresponding to these points is 10. 

For 1 = 75/17, 

  x = 
28

17
z,λ

4

17
y,λ

7

34
22  2, 

which on substitution in 
25

z

5

y

4

x 222

  = 1 give  

  2 = )64617/(140  

The corresponding stationary points are  

  )646/5,646/35,646/40(),646/5,646/35,646/40(   

The value of x
2
 + y

2
 + z

2
 corresponding to these points is 75/17.  

Thus the maximum value is 10 and the minimum 75/17. 
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Example 5.3.7 Prove that the volume of the greatest rectangular parallelepiped that can be 

inscribed in the ellipsoid 
2

2

2

2

2

2

c

z

b

y

a

x
  = 1, is 

33

abc8
 

Solution. We have to find the greatest value of 8xyz subject to the conditions  

  1
c

z

b

y

a

x
2

2

2

2

2

2

 ,   x > 0, y > 0, z > 0   …(1) 

Let us consider a function F of three independent variables x, y, z, where  

  F = 8xyz + 













 1

c

z

b

y

a

x
2

2

2

2

2

2

 

 dF = 



























222 c

λz2
dxydy

b

λy2
zx8dx

a

λx2
yz8 dz 

At stationary points,  

  8yz + 0
c

λz2
xy8,0

b

λy2
zx8,0

a

λx2
222
   …(2) 

Multiplying by x, y, z respectively and adding,  

  24xyz + 2 = 0   or  = 12xyz.    [using (1)] 

Hence, from (2), x = a/3, y = b/3,   z = c/3, and so  = 4abc/3 

Again  

 d
2
F = 2
















2

2

2

2

2

2

c

dz

b

dy

a

dx
 + 16z dx dy + 16x dy dz + 16 dz dx 

        =  
3

16
dx

a

1
Σ

3

abc8 2

2
 c dx dy    …(3) 

Now from (1) we have  

 x 0
c

dz

b

dy

a

dx
or0

c

dz
z

b

dy
y

a

dx
222

 .   …(4) 

Hence squaring,  

  0
ab

dydx
Σ2

a

dx
2

2

  

or 
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 abc 
2

2

a

dx
 = 2c dx dy 

   d
2
F = 

2

2

a

dx
Σabc

3

16
 

which is always negative.  

 Hence 








3

c
,

3

b
,

3

a
 is a point of maxima and the maximum value of 8 xyz is 

33

abc8
. 

5.4  Check Your Progress 
Q.1 Define Jacobian of a function. 

Fill in the blanks in the following question: 

Q.2 If the roots of the equation in  

             (  x)
3
 + (  y)

3
 + (  z)

3
 = 0 

are u, v, w.  Then prove that 

            
 
 

   
   vuuwwv

yxxzzy
2

z,y,x

w,v,u









 

Solution. Here u, v, w are roots of the equation    

 
3
 (x + y + z)

2
 + (x

2
 + y

2
 + z

2
) 

3

1
(x

3 
+ y

3
 + z

3
) = 0 

Let us suppose,  x + y + z = , x
2
 + y

2
 + z

2
 = η, 

2

1
(x

3
 + y

3
 + z

3
) =    (1) 

and 

 u + v + w = , vw + wu + uv = A, uvw =       (2) 

Hence from (1), 

 
 
 z,y,x

ζ,η,ξ




 = 

222 zyx

z2y2x2

111

 

      = ……………..                              (3) 

and from (2), 
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 w,v,u

ζ,η,ξ




 = 

uvwuvw

vuuwwv

111

  

        = ……………………                  (4) 

Hence from (3) and (4), we get 

 
 
 z,y,x

w,v,u




 =…………………….= 2

   
   vuuwwv

yxxzzy




 

Q.3 If u = x + y + z + t, v = x + y  z  t, w = xy  zt, 

   r = x
2
 + y

2
  z

2
  t

2
, 

then show that 0
)t,z,y,x(

)r,w,v,u(





 

and hence find a relation between x, y, z and t.  

Solution. 

t2z2y2x2

ztxy

1111

1111

)t,z,y,x(

)r,w,v,u(











 

             = 

t2z2y2x2

ztxy

1111

0022






  [Adding R2 to R1]  

   =   ………………………….  [Subtracting C1 from C2] 

             = 2

t2z2)yx(2

ztyx

110







 

             = 2

t2)zt(2)yx(2

ztzyx

100







 [Operating C2  C3] 

             = 2(x y) (z t) 

t222

z11

100







  [  C1 and C2 are identical] 
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                                    = ………………… 

Hence the functions u, v, w, r are not independent.  

Now we find a relation between u, v, w, r.  We have 

 uv = (x + y + z + t) (x + y z t) = (x +y)
2
  (z +t)

2
 

     = (x
2
 + y

2
 z

2
 t

2
) + 2(xy zt) = r + 2w 

Thus uv =……………., 

which is the required relation. 

Q.4  Let 

  f(x, y) = 2x
4
  3x

2
 y + y

2
 

Then 
x

f




 =…………  0)0,0(

y

f
y2x3

y

f
;0)0,0(

x

f 2 













 

  r = 
2

2

x

f




24x

2
  6y = 0 at (0, 0), s = 

yx

f2




 = ……….= 0 at (0, 0) 

  t = 2
y

f
2

2





. Thus rt  s

2
 = 0. Thus it is a doubtful case  

However, we can write f(x, y) = (x
2
  y) (2x

2
 y), f(0, 0) = 0 

     f(x, y)  f(0, 0) = …………..> 0 for y < 0 or x
2
 > y > 0 

                < 0 for y > x
2
 > 0

2

y
  

Thus f does not keep the some sign mean (0, 0). Therefore it does not have maximum or 

minimum at(0, 0). 

Q.5 Explain Lagrange’s Method of Undermined Multiplier. 

 

5.5 Summary 

Jacobians play important role in transformation of coordinates or change of variables. If u1, 

u2,..., un be n differentiable functions of n variables y1, y2,…,yn, and y1, y2,…,yn are functions of 

x1, x2, …, xn, then change of variable is given by formula 

 

 
1 2

1 2

, ,...,

, ,...,

n

n

u u u

x x x




= 

 

 
1 2

1 2

, ,...,

, ,...,

n

n

u u u

y y y




. 

 

 
1 2

1 2

, ,...,

, ,...,

n

n

y y y

x x x




. 
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      The necessary and sufficient condition that there exists a functional relation between 

variables u1, u2,..., un and x1, x2, …, xn  is that 
 

 
1 2

1 2

, ,...,

, ,...,

n

n

u u u

x x x




= 0. 

A necessary condition for f(x, y) to have an extreme value at (a, b) is that  

                             fx(a, b) = 0, fy(a, b) = 0. 

       Further it is an easy practice to deal with d
2
F by expressing it in terms of two variables 

only. The Lagrange’s method of undetermined multiplier gives only extreme point, but no idea 

about maxima or minima at that point. To find maxima or minima for more than two variable, it 

is convenient to express the three variable in terms tf two variable only.   

5.6  Keywords 
Matrix, Determinants, Partial Derivative, Neighborhood of Function of More than One 

Variable, Total derivative and Composite Function. 

 

5.7  Self-Assessment Test  
Q.1 If 

                           

3 2 2 2

3 2 2

3 2 2

,

,

u v w x y z

u v w x y z

u v w x y z

    

    

    

 

then prove that, 
2 2 2 2 2 2

( , , ) 1 4( ) 16

( , , ) 2 3( ) 27

u v w xy yz zx xyz

x y z u v w u v w

    


    
.  

Q.2 Show that the functions 

                 u = x + y + z, v = xy + yz + zx and w = x
3
 + y

3
+ z

3
- 3xyz 

are not linearly independent. Find the relation between them. 

Q.3. Show that if  xyz = abc, the minimum value of bcx + cay + abz is 3abc. 

Q.4 Show that points on ellipse 5x
2

 – 6xy + 5y
2
 = 4 for which the tangent is at the  

       greatest distance from origin are (1, 1) and (-1, -1).  

Q.5 If ax
2
 + by

2
 + cz

2
 + 2fyz + 2gxz + 2hxy = k (constant) and lx + my + nz = 0, find  

       maximum and minimum value of x
2 + 

y
2
 + z

2
. 

 

5.8 Answers to check your progress  
A.1 Read the definition from 5.2. 

A.2 2(y  z)(z  x)(x y), (v w) (w  u) (uv), 
 
 ζ,η,ξ

w,v,u




.

 
 z,y,x

ζ,η,ξ




. 
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A.3 

t2z2x2y2x2

ztyxy

1101

0002






,0, r + 2w  

A.4 8x
3
  6xy, 6x, (x

2
 y) (2x

2
  y). 

A.5  Read 5.3 for answer.  
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MAL-512: M. Sc. Mathematics (Real Analysis) 

Lesson No. VI                                                         Written by Dr. Vizender Singh 

Lesson: The Riemann-Stieltjes Integrals 

Structure: 

6.0   Learning Objectives 

6.1  Introduction  

6.2  Riemann-Stieltjes Integral 

6.3  Check Your Progress 

6.4  Summary 

6.5  Keywords 

6.6  Self-Assessment Test  

6.7  Answers to check your progress  

6.8  References/ Suggested Readings 

 

6.0 Learning Objectives 

 The learning objectives of this lesson are to study concept of Riemann-Stieltjes 

integral (due to its vast application in Probability Theory and Functional Analysis 

etc.) which is generalization of Riemann integral. 

 To illustrate one of situation under which R-S integral reduces to Riemann integral. 

 To study necessary and sufficient condition for existence of Riemann-Stieltjess 

integral. 

 To study first and second mean value theorem and fundamental theorem of integral 

calculus in setting of R-S integral. 

 

6.1 Introduction 

Having discussed the Riemann theory of integration to the extent possible within the 

scope of present discussion, we now pass on generalization of the topic. As mentioned earlier 

many refinements and extensions of the theory exist but we shall study briefly-in fact very 

briefly-the extension due to Stieltjes integration, known as theory of Riemann–Stieltjes 

integration. It may be stated once for all that, unless otherwise stated, all function will be real 
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valued and bounded on the domain of definition. The function  will always be monotonically 

increasing. 

As an analog to the Riemann sum, we also introduce a sum which will lead to a sufficient 

condition for the existence of a Riemann-Stieltjes integral. 

6.2 Riemann-Stieltjes Integral 

Definition 6.2.1 Let f and  be bounded functions on [a, b] and  be monotonic increasing on 

[a, b], b  a. 

Let P = {a = x0, x1,…, xn = b} be any partition of [a, b] and let 

  i = (xi)  (xi1), i = 1, 2, …, n. 

Note that i  0. Let us define two sums,  

  U(P, f, ) = 


n

1i

iM i 

  L(P, f, ) = 


n

1i

im i 

where mi, Mi, are infimum and supremum respectively of f in xi. Here U(P, f, )  is called the 

Upper sum and L(P, f, ) is called the Lower sum of f corresponding to the partition P.  

Let m, M be the lower and the upper bounds of f on [a, b], then we have  

  m  mi  Mi  M 

 m  i  mi  i  Mii,  Mi, for i  0 

Putting i = 1, 2,…, n and adding all inequalities, we get   

 m{(b)  (a)}  L(P, f, )  U(P, f, )  M{(b)  (a)}           …(1) 

As in case of Riemann integration, we define two integrals,     

  
b

a
f d = inf. U(P, f,  ) 

  
b

a
f  d = sup. L(P, f, )                                                                 …(2) 

where the infimum and supremum is taken over all partitions P of [a, b]. These are respectively 

called the upper and the lower integrals of f with respect to .  

 These two integrals may or may not be equal. In case these two integrals are equal, i.e.,  
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b

a
f d = 

b

a
f d,  

we say that f is integrable with respect to  in the Riemann sense and write f R(). Their 

common value is called the Riemann-Stieltjes integral of f with respect to , over [a, b]  and is 

denoted by  

  
b

a

αdf or 
b

a

)x(f d(x). 

From (1) and (2), it follows that  

m{(b)  (a)}  L(P, f, )  
b

a
f d  

b

a
 f d 

       U(P, f, )  M{(b)  (a)}    …(3) 

Note: The upper and the lower integrals always exist for bounded functions but these may not 

be equal for all bounded functions. The Riemann-Stieltjes integral reduces to Riemann integral 

when (x) = x.  

Note:  As in case of Riemann integration, we have  

(1) If f  R(), then there exits a number   between the bounds of f such that  

   

b

a

df  {(b)  (a)}  

(2) If f is continuous on [a, b], then there exits a number  [a, b] such that  


b

a

f d = f() {(b)  (a)} 

(3) If f  R(), and k is a number such that  

|f(x)|  k, for all x  [a, b] 

then  

 
b

a

αdf  k{(b)  (a)} 

(4) If f  R() over [a, b] and f(x)  0, for all x  [a, b], then  

 






b

a
ab

b
df

,0

,0
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Since f(x)  0, the lower bound m  0 and therefore the result follows from (3).  

(5) If f  R(), gR() over [a, b] with f(x)  g(x), then  

  
b

a

b

a

αdgαdf , b  a,  

and   

  
b

a

b

a

gαdf  d, b  a. 

Theorem 6.2.2 If  P* is a refinement of P, then  

(a)     U(P*, f, )  U(P, f, ).and 

(b)     L(P*, f,  )  L(P, f, ),  

Proof. (a) Let P = {a = x0, x1,…, xn = b} be a partition of the given interval. Let P* contain just 

one point more than P. Let this extra point  belongs to xi, i.e., xi1 <  < xi 

 As f is bounded over the interval [a, b], it is bounded on every sub-interval xi (i = 1, 

2,…, n). Let V1, V2, Mi be the upper bounds (supremum) of f in the intervals [xi1, ], [, xi], 

[xi1, xi], respectively.  

 Clearly 

  V1  Mi and  V2  Mi. 

      U(P*, f, )  U(P, f, ) = V1{()  (xi1)} + V2{(xi) ()}  Mi{(xi)   

                                                                                                                               (xi1}                                                 

    = (V1  M1) {()  (xi1)}+ (V2  Mi) {(xi)  ()}                              

                                                 0 

 U(P*, f, )   U(P, f, ) 

 If P* contains m points more than P, we repeat the above arguments m times and get the 

result.  

The proof of (b) runs on the same arguments.   

Theorem 6.2.3 A function f is integrable with respect to  on [a, b] if and only if for every  > 

0 there exists a partition P of [a, b] such that  

  U(P, f, )  L(P, f, ) <  
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Proof. Let f  F() over [a, b] 

 
b

a
αdf = 

b

a
f d = 

b

a


 f d 

Let  > 0 be any number.  

 Since the upper and the lower integrals are the infimum and the supremum of the set of 

the upper and the lower sums, therefore  partitions P1 and P2 such that  

 U(P1, f, ) < 
b

a
f d + 2

1  = 
b

a

f d + 2
1  

 L(P2, f, ) > 


f d  2
1   = 

b

a

f d  2
1  

Let P = P1  P2 be the common refinement of P1 and P2. 

 U(P, f, )  U(P1, f, ) 

       < 
b

a

f d + 2
1  < L (P2, f, ) +  

          L(P, f, ) +  

  U(P, f, )  L(P, f, ) <  

Converse  

                     For  > 0, let P be a partition for which  

  U(P, f, )  L(P, f, ) <  

For any partition P, we have  

  L(P, f, )  
b

a
f d  

b

a
f d  U(P, f, ) 

   


fdf
b

a

b

a  d  U(P, f, )  L(P, f, ) <  

     
b

a
f = 

b

a
αdf  

so that fR() over [a, b]. 

Theorem 6.2.4 If f1  R() and f2R() over [a, b], then  
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  f1 + f2  R() and   

b

a

b

a

b

a

2121 αdfαdfαd)ff(  

Proof. Let f = f1 + f2.  

Then f is bounded on [a, b]. 

 If P = {a = x0, x1,…, xn = b} be any partition of [a, b] and ii Mm  , ; ;M,m ii
  mi, Mi the 

bounds of f1, f2 and f, respectively on xi, then 

  iiiiii MMMmmm   

Multiplying by i and adding all these inequalities for i = 1, 2, 3,…, n, we get  

 L(P, f1, ) + L(P, f2, )  L(P, f, )  U(P, f, )    

           U(P, f1, ) + U(P, f2, )    …(1) 

Let  > 0 by any number.  

Since f1  R(), f2  R(), therefore  partitions P1, P2 such that  

 U(P1, f1, )  L(P1, f1, ) < 
2

1  

 U(P2, f2, )  L(P2, f2, ) < 
2

1  

Let P = P1  P2, a refinement of P1 and P2.  

  U(P, f1, )  L(P, f1, ) < 
2

1  

 U(P, f2, )  L(P, f2, ) < 
2

1                                                                       …(2) 

Thus for partition P, we get from (1) and (2). 

 U(P, f, )  L(P, f, )  U(P, f1, ) + U(P, f2, )  L(P, f1, )  L(P, f2, ) 

    < 
2

1  +
2

1  =  

 f  R() over [a, b] 

 Since the upper integral is the infimum of the upper sums, therefore  partitions P1, P2 

such that  
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  U(P1, f1, ) < 
b

a

1f d + 
2

1  

  U(P2, f2, ) < 
b

a

2f  d + 
2

1  

If P = P1  P2, we have  

  





















εαdf)α,f,P(U

εαdf)α,f,P(U

b

a

22

b

a

11

2

1

2

1

     …(3) 

For such a partition P,  

 
b

a

αdf   U(P, f, )  U(P, f1, ) + U(P, f2, ) [from (1)] 

            
b

a a

21 fαdf  dx +   [by (3)] 

Since  is arbitrary, we get   

    

b

a

b

a

b

a

dfdfdf  21      …(4) 

Taking (f1) and (f2) in place of f1 and f2, we get  

   
b

a

b

a

1 αdfαdf  + 
b

a

2f d     …(5) 

(4) and (5) give 

    

b

a

b

a

b

a

21 αdfαdfαdf  

 Theorem 6.2.5 If f  R(), and c is a constant, then  

 cf  R() and  

b

a

b

a

αdfcαdcf  
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Proof.  Let f () and let g = cf. Then  

  U(P, g, ) =  
 


n

1i

n

1i
iiii

αΔcMαΔ'M  

        = 


n

1i

ii
αΔMc  

        = c U(P, f, ) 

Similarly 

  L(P, g, ) = c L(P, f, ) 

Since f  (),  a partition P such that for every  > 0, 

 

  U(P, f, )  L(P, f, ) < 
c


 

Hence 

  U(P, g, )  L(P, g, ) = c[U(P, f, )  L(P, f, )] 

       < c 


c
. 

Hence g = c f  (). 

Further, since U(P, f, ) < 



b

a 2
αdf , 

  
b

a

αdg  U(P, g, ) = c U(P, f, ) 

   < c 






 


b

a 2
αdf  

Since  is arbitrary   

   
b

a

b

a

αdfcαdg  

Replacing f by f, we get  
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b

a

b

a

αdfαdg  

Hence  
b

a

b

a

αdfcαd)cf(   

Theorem 6.2.6 If f  R( ) on [a, b], then f R() on [a, c] and fR() on [c, b] where c is a 

point of [a, b] and  

    
b

a

b

c

c

a

αdfαdfαdf  

Proof. Since f  R(), there exists a partition P such that  

  U(P, f, )  L(P, f, ) < ,     > 0. 

Let P* be a refinement of P such that P* = P U{C}. Then 

  L(P, f, )  L(P*, f, )  U(P*, f, )  U(P, f, ) 

which yields  

 U(P*, f, )  L(P*, f, )  U(P, f, )  L(P, f, )               (1) 

Let P1 and P2 denotes the sets of point of P* between [a, c], [c, b] respectively. Then P1 and P2 

are partitions of [a, c] and [c, b] and P* = P1 U P2. Also  

  U(P*, f, ) = U(P1, f, ) + U(P2, f, )                     (2) 

and 

  L(P*, f, ) = L(P1, f, ) + L(P2, f, )                       (3) 

Then, (1), (2) and (3) imply that  

 U(P*, f, )  L(P*, f, ) = [U(P1, f, )  L(P1,f,)] + [U(P2,f,) L(P2,f, )] 

        <  

Since each of U(P1, f, )  L(P1, f, ) and U(P2, f, )  L(P2, f, ) is nonnegative, it follows 

that  

  U(P1, f, )  L(P1, f, ) < /2 

and  

  U(P2, f, )  L(P2, f, ) < /2 

Hence f is integrable on [a, c] and [c, b]. 
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Taking inf. for all partitions, the relation (2) yields 

  
b a b

a a c

f d f d f d                         (4) 

But since f integrable on [a, c] and [c, b], we have  

    
b

a

c

a

b

c

αdfαdfαd)x(f                 (5) 

The relation (3) similarly yields 

    
b

a

c

a

b

c

αdfαdfαdf                      (6) 

Hence (5) and (6) imply that 

    
b

a

c

a

b

c

αdfαdfαdf  

Theorem 6.2.7 If f () and if |f(x)|  K on [a, b], then 

  
b

a

αdf   K[(b)  (a)]. 

Proof.  If M and m are bounds of f  () on [a, b], then it follows that  

  m[(b)  (a)]  
b

a

f d  M[(b)  (a)] for b  a.       (1) 

In fact, if a = b, then (1) is trivial. If b > a, then for any partition P, we have  

  m[(b)  (a)]  


n

1i

i
m  i = L(P, f, ) 

      
b

a

αdf  

      U(P, f, ) =  i
M   i 

      M[(b)  (a)] which yields  

  m[(b)  (a)]  
b

a

f d  M[(b)  (a)]                   (2) 
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Since |f(x)|  k for all x[a, b], we have  

   k  f(x)  k 

so if m and M are the bounds of f in [a, b], 

   k  m  f(x)  M  k for all x  [a, b]. 

If b  a, then (b)  (a)  0 and we have by (2) 

    k[(b)  (a)]  m[(b) (a)]  
b

a

αdf  

         M[(b)  (a)]   k [(b)  (a)] 

Hence  

  
b

a

αdf   k[(b)  (a)] 

Theorem 6.2.8 If f  () and g () on [a, b], then f.g  , |f|  () and  

   
b

a

b

a

|f|αdf  d 

Proof. Let  be defined by (t) = t
2
 on [a, b]. Then h(x) = [f(x)] = f

2
  () . 

Also  

  fg = 
4

1
 [(f + g)

2
  (f  g)

2
]. 

 

Since, f, g (), f + g  (), f  g  (). Then, (f + g)
2
 and (f  g)

2
  () and so their 

difference multiplied by 
4

1
 also belong to () proving that fg  . 

If we take (f) = |t| , then |f|  (). We choose c =  1 so that  

  c  αdf   0 

Then  

      |f|αdfcαdfαdf  d  

Because cf  |f|. 



Real Analysis  MAL-512 

DDE, GJUS&T, Hisar  134 |  

 

 

   

(3) if f1  R(), f2  R() and f1(x)  f2(x) on [a, b] then  

 
b

a

1 αdf  
b

a

2f d  

 Theorem 6.2.9 If f  R(1) and f  R(2), then  

 f  R(1 + 2) and   

b

a

b

a

21

b

a

21 αdfαdf)αα(df  

and if f  R() and c a positive constant, then  

 f  R(c) and  

b

a

b

a

αdfc)αc(df . 

 Proof. Since f  R(1) and f  R(2), therefore for  > 0,  partitions P1, P2 of [a, b] such that  

  U(P1, f, 1)  L(P1, f, 1) <
2

1  

  U(P2, f, 2)  L(P2, f, 2) < 
2

1  

Let P = P1  P2 

 U(P, f, 1)  L(P, f, 1) < 
2

1  

 U(P, f, 2)  L(P, f, 2) < 
2

1       …(1) 

Let the partition P be {a = x0, x1, x2,…, xn = b}, and mi, Mi be bounds of f in xi.  

Let  = 1 + 2. 

 (x) = 1(x) + 2(x) 

 1i = 1(xi)  1(xi1) 

 2i = 2(xi)  2(xi1) 

 i = (xi)  (xi1) 

        = 1(xi) + 2(xi)  1(xi1)  2(xi1) 

        = 1i + 2i 
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 U(P, f, ) = 
i

iM i 

       = 
i

iM (1i + 2i) 

       = U(P, f, 1) + U(P, f, 2)     …(2) 

Similarly,  

 L(P, f, ) = L(P, f, 1) + L(P, f, 2)     …(3) 

 U(P, f, )  L(P, f, ) = U(P, f, 1)  L(P, f, 1) 

      + U(P, f, 2)  L(P, f, 2) 

    < 
2

1  + 
2

1  =  [using (1)] 

 f  R(), where  = 1 + 2 

Now, we notice that  

  
b

a

αdf  = inf  U(P, f, ) 

             = inf {U(P, f, 1) + U(P, f, 2)} 

              inf U(P, f, 1) + inf U(P, f, 2) 

             =  
b

a

b

a

21 αdfαdf      …(4)   

Similarly,  

  
b

a

αdf  = sup L(P, f, ) 

               
b

a

b

a

1 fαdf  d2      …(5) 

From (4) and (5),  

    

b

a

b

a

b

a

21 αdfαdfαdf  

where  = 1 + 2. 
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Integral as a limit Sum 

 For any partition P of [a, b] and ti  xi, consider the sum  

  S(P, f, ) = 


n

1i

i )t(f i 

We say that S(P, f, ) converges to A as (P)  0 if for every  > 0, there exists  > 0 such that 

|S(P, f, )  A| < , for every partition P = {a = x0, x1, x2,…, xn = b}, of [a, b], with mesh/norm 

(P) <  and every choice of ti in xi. 

Theorem 6.2.10 If S(P, f, ) converges to A as (P)  0, then  

  fR(), and 
0)P(μ

lim


 S(P, f, ) = 
b

a

αdf  

Proof. Let us suppose that lim S(P, f, ) exists as (P)  0  and is equal to A.  

Therefore, by definition of limit, for  > 0,   > 0 such that for every partition P of [a, b] with | 

(P) - 0 | <  and every choice of ti in xi, we have  

  |S(P, f, )  A| < 
2

1  

or  

  A  
2

1  < S(P, f, ) < A + 
2

1     …(1) 

 Let P be a partition. If we let the points ti range over the interval xi and take the 

infimum and the supremum of the sums S(P, f, ), (1) yields  

  A  
2

1  < L(P, f, )  U(P, f, ) < A + 
2

1    …(2) 

 U(P, f, )  L(P, f, ) <  

 fR() over [a, b] 

Again, since S(P, f, ) and 
b

a

f d lie between U(P, f, ) and L(P, f, ) 

  
b

a

αdf)α,f,P(S   U(P, f, )  L(P, f, ) <  
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b

a
0)P(μ

αdf)α,f,P(Slim  

Theorem 6.2.11 If f is continuous on [a, b], then f  R() over [a, b]. Also, to every  > 0 there 

corresponds a  > 0 such that  

  
b

a

αdf)α,f,P(S  <  

for every partition P = {a = x0, x1, x2,…, xn = b} of [a, b] with (P) < , and for every choice of 

ti in xi, i.e.,  

  


b

a
0)P(μ

αdf)α,f,P(Slim  

Proof.  Let  > 0 be given, and let  > 0 such that  

  {(b)  (a)} <       …(1) 

 Since continuity of f on the closed interval [a, b] implies its uniform continuity on [a, b], 

therefore for  > 0 there corresponds  > 0 such that  

  |f(ti)  f(t2)| < ,   if |t1  t2| < ,  t1, t2  [a, b]  …(2) 

Let P be a partition of [a, b], with norm (P) < . 

Then by (2),  

 Mi  mi  , i = 1, 2,…, n 

 U(P, f, )  L(P, f, ) = 
i

iM(  mi)xi 

      
i

ixΔ  

    = ((b)  (a)} <     …(3) 

   fR() over [a, b]. 

Again if fR(), then for  > 0,    > 0 such that for all partitions P with (P) < ,  

  |U(P, f, )  L(P, f, )| <  
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Since S(P, f, ) and 
b

a

αdf  both lie between U(P, f, ) and L(P, f, ) for all partitions P with 

(P) <  and for all positions of ti in xi.  

 
b

a

αdf)α,f,P(S  < U(P, f, )  L(P, f, ) <  

 
0)P(μ

lim


S(P, f, ) = 
0)P(μ

lim




n

1i

i )t(f  i = 
b

a

αdf  

Theorem 6.2.12 If f is monotonic on [a, b], and if  is continuous on [a, b], then fR(). 

Proof. Let  > 0 be a given positive number.  

For any positive integer n, choose a partition P = {x0, x1,…, xn} of [a, b] such that  

 i = 
n

)a(α)b(a 
, i = 1, 2,…,n 

This is possible because  is continuous and monotonic increasing on the closed interval 

[a, b] and thus assumes every value between its bounds, (a) and (b). 

Let f be monotonic increasing on [a, b], so that its lower and the upper bound, mi, Mi, in 

xi are given by  

 mi = f(xi1), Mi = f(xi),  i = 1, 2,…, n 

  U(P, f, )  L(P, f, ) = 


n

1i

iM(   mi)i 

     = 


 n

1i

{
n

)a(α)b(α
f(xi  f(xi1)} 

     = 
n

)a(α)b(α 
{f(b)  f(a)} 

     < , for large n  

 f R() over [a, b] 

Example 6.2.13 Let a function  increase on [a, b] and is continuous at x, where a  x  b and 

a function f is such that  

  f(x) = 1, for x = x  , and f(x) = 0, for x  x  
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then prove fR() over [a, b], and 
b

a

f  d = 0 

Solution. Let P = {a = x0, x1, x2,…, xn = b} be a partition of [a, b] and let x  xi.  

 But since  is continuous at x and increases on [a, b], therefore for  > 0, we can choose 

 > 0 such that 

  i = (xi)  (xi1) < , for xi <  

 Let P be a partition with (P) < . Now 

  U(P, f, ) = I                                           [By using definition of f(x)] 

  L(P, f, ) = 0 

  
b

a
f d = inf U(P, f, ), over all partitions P with (P) <  

   = 0 = 


b

a
αdf  

 fR(), and 
b

a

f  d = 0. 

Theorem 6.2.14 If f  R[a, b] and  is monotonic increasing on [a, b] such that                     

R[a, b], then f  R(), and  

  
b

a

αdf  = 
b

a

'αf  dx 

Proof. Let  > 0 be any given number.  

Since f is bounded, there exists M > 0, such that  

  |f(x)|  M,     x  [a, b] 

 Again since f,   R[a, b], therefore f  R[a, b] and consequently  1 > 0, 2 > 0 

such that  

   dxfxttf iii ')(')(   < /2    …(1) 

for (P) < 1 and all ti  xi, and  

   dx'αxΔ)t('αΣ ii  < /4M     …(2) 

for (P) < 2 and all ti  xi 
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Now for (P) < 2 and all ti  xi, si  xi, (2) gives  

  |(ti)  (si)| xi < 2. 
M2

ε

M4

ε
     …(3) 

Let  = min (1, 2), and choose P any partition with (P) < . 

Then, for all ti  xi, by Lagrange’s Mean Value Theorem, there are points si  xi such that  

  i = [(xi) - (xi-1)] = (si) [xi – xi-1]= (si) xi  …(4) 

Thus 

 dx'αfxΔ)s('α)t(fΣdx'ααΔ)t(fΣ iiiii    

                        =   iiiiiii xΔ)]t('α)s('α)[t(fΣdx'αfxΔ)t('α)t(fΣ  

               dx'αfxΔ)t('α)t(fΣ iii  

      +  |f(ti)| |(si)  (ti)| xi 

             < 
M2

ε
M

2

ε
 =  

Hence for any  > 0,   > 0 such that for all partitions with (P) < , (5) holds  

 
0)P(μ

lim

f(ti) i exists and equals dxf

b

a

 '  

 fR(), and  
b

a

b

a

df  dxf ' .      

Theorem 6.2.15 If f is continuous on [a, b] and  a continuous derivative on [a, b], then  

   
b

a

b

a

dx'αfαdf  

Proof.  Let P = {a = x0, …., xn = b} be any partition of [a, b]. Thus, by Lagrange’s Mean 

value Theorem it is possible to find ti  ]xi1, xi[, such that  

  (xi)  (xi1) = (ti) (xi  xi1), i = 1, 2,…, n 

or 

  i = (ti) xi 
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  S(P, f, ) = 


n

1i

i )t(f i 

      = 


n

1i

i )t(f  (ti) xi = S(P, f)    …(6) 

Proceeding to limits as (P)  0, since both the limits exist, we get  

   

b

a

b

a

'αfαdf  dx 

Example 6.2.16 

(i)  
2

0

22 dxx  =  
2

0

2

0

32 x2dxx2x dx = 8 

(ii)   
2

0

2

0

2 dxx2]x[dx]x[  

    =  

1

0

dxx2]x[ 
2

1

]x[ 2x  dx = 0     3 = 3 

First Mean Value Theorem 

Theorem 6.2.17 If a function f is continuous in [a, b] and  is monotonic increasing on [a, b], 

then there exists a number  in [a, b] such that  

  
b

a

f (x) d(x) = f()  [(b)  (a)] 

Also as f is continuous and  is monotonic, therefore f  R(). 

Proof. Let m, M be the infimum and supremum of f in [a, b]. Then   

  m{ (b) (a)}  
b

a

f  d  M{(b)  (a)} 

Hence there exists a number , m    M such that  

  
b

a

f d = {(b)  (a)} 
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Again, since f is continuous on [a, b], therefore it assumes every value between its bounds, there 

exists a number   [a, b] such that f() =  

 
b

a

f  d = f() {(b)  (a)} 

Remark 6.2.18 It may not be possible always to choose  such that a <  < b.  

Consider (x) = 








bxa,1

ax,0
 

For a continuous function f, we have  

  
b

a

αdf  = f(a) = f(a) {(b)  (a)} 

Theorem 6.2.19 If f is continuous and  monotone on [a, b], then  

    

b

a

b

a

b

a dfα)x(α)x(fαdf  

Proof.  Let P = {a = xn, x1,…., xn =b} be a partition of [a, b]. 

Let  t1, t2,…, tn such that xi1   ti   xi, and let t0 = a, tn+1= b,  so that ti1  xi1  ti. 

Then Q = {a = t0, t1, t2,…, tn, tn+1=b} is also a partition of [a, b] 

Now  

 S(P, f, ) = 


n

1i

i )t(f i 

      = f(t1) [(x1)  (x0)] + f(t2)[(x2)  (x1)] + … 

     + f(tn) [(xn)  (xn1)] 

                  = (x0) f(t1)  (x1) [f(t2)  f(t1)] 

     + (x2) [f(t3)  f(t2)] + … 

     + (xn1) [f(tn)  f(tn1)] +  (xn) f(tn) 

Adding and subtracting (x0) f(t0) + (xn) f(tn+1), we get  

 S(P, f, ) = (xn) f(tn+1)  (x0) f(t0)  


n

0i

α (xi) {f(ti+1)  f(ti)} 
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      = f(b) (b)  f(a) (a)  S(Q, , f)    …(1) 

If (P)  0, then (Q)  0, then, lim S(P, f, ) and lim S(Q, , f) both exist and that  

  lim S(P, f, ) = 
b

a

αdf  

and  

  lim S(Q, , f) = 
b

a

α  df 

Hence proceeding to limits when (P)  0, we get from (1),  

    

b

a

b

a

b

a dfα)x(α)x(fαdf      …(2) 

where  b
a)x(α)x(f  denotes the difference f(b) (b)  f(a) (a).  

Corollary 6.2.20 The result of the theorem can be put in a slightly different form, if, in addition 

to monotone property,  is continuous also  

  
b

a

f d = f(b) (b)  f(a) (a)  
b

a

α  df 

             = f(b) (b)  f(a) (a)  () [f(b)  f(a)] 

             = f(a) [()  (a)] + f(b) [(b)  ()] 

where   [a, b].     

Stated in this form, it is called the Second Mean Value Theorem. 

Integration and Differentiation  

Definition 6.2.21 If f R on [a, b], than the function F defined by  

  F(t) = 
t

a

)x(f dx, t  [a, b] 

is called the “Integral Function” of the function f.  

Theorem 6.2.22 If f  on [a, b], then the integral function F of f is continuous on [a, b]. 

Proof. We have  
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  F(t) = 
t

a

)x(f dx 

Since f  , it is bounded and therefore there exists a number M such that for all x in [a, b], 

|f(x)|  M. 

Let  > 0 be any positive number and c any point of [a, b]. Then  

  F(c) = 
c

a

)x(f dx, F(c + h) 
hc

a

)x(f dx 

Therefore, 

  |F(c + h)  F(c) = |  



hc

a

c

a

)x(fdx)x(f dx | 

     = 
hc

a

dx)x(f  

        M |h| 

     <  if |h| < 
M


 

Thus, |(c + h)  c| <  = 
M


 implies |F(c + h)  F(c)| < . Hence F is continuous at any point c 

[a, b] and is so continuous in the interval [a, b]. 

Theorem 6.2.23 If f is continuous on [a, b], then the integral function F is differentiable and 

F(x0) = f(x0), x0[a, b]. 

Proof. Let f be continuous at x0 in [a, b]. Then for for every  > 0  there exists  > 0 such that  

  |f(t)  f(x0)| <                                                                                     (1) 

Whenever |t  x0| < . Let x0   < s  x0  t < x0 +  and a  s < t  b, then  

 





 t

s

00
)x(fdx)x(f

st

1
)x(f

st

)s(F)t(F
 

            =  





t

s

t

s

0
dx)x(f

st

1
dx)x(f

st

1
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            =  





t

s

0

t

s

0
)x(f)x(f

st

1
dx)]x(f)x(f[

st

1
dx < ,  

                               (Using (1)). 

Hence, F(x0) = f(x0). This completes the proof of the theorem.  

Fundamental Theorem of the Integral Calculus 

Theorem 6.2.24 If f   on [a, b] and if there is a differential function F on [a, b] such that F = 

f, then  

  
b

a

dx)x(f  = F(b)  F(a) 

Proof. Let P be a partition of [a, b] and choose ti (I = 1, 2,…., n) such that xi1  ti  xi. Then, by 

Lagrange’s Mean Value Theorem, we have  

  F(xi)  F(xi1) = (xi  xi1) F(ti) = (xi  xi1) f(ti) (since F = f) 

Further, 

  F(b)  F(a) = 





n

1i

1ii
)]x(F)x(F[  

         = 


n

1i

i
)t(f  (xi  xi1) 

         = 


n

1i

i
)t(f   xi 

and the last sum tends to 
b

a

)x(f  dx as |P|  0,  taking (x) = x. Hence  

   
b

a

)a(F)b(Fdx)x(f . 

Integration of Vector-Valued Functions 

Let f1. f2,…., fk be real valued functions defined on [a, b] and let f = (f1, f2,…., fk) be the 

corresponding mapping of [a, b] into R
k
. 

Let  be a monotonically increasing function on [a, b]. If fi  () for i = 1, 2,…., k, we say 

that f  () and then the integral of f is defined as 
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b

a

b

a

b

a

b

a

k21
αdf,......,αdf,αdfαdf . 

Thus 
b

a

αdf  is the point in R
k
 whose ith coordinate is  i

f  d. 

It can be shown that if f  (), g (), 

then  

 (i)    
b

a

b

a

b

a

αdgαdfαd)gf(  

  (ii)    

b

a

c

a

b

c

dfdfdf , a < c < b.  

 (iii)  if f  (1), f (2), then f  (1 + 2) 

and   
b

a

f d (1 + 2) = 
b

a

f d 1 +  
b

a

f  d2 

since fundamental theorem of integral calculus holds for vector valued function, we have 

Theorem 6.2.25 If f and F map [a, b] into 
k
, if f  () and F = f, then  

  
b

a

)t(f  dt = F(b)  F(a) 

Theorem 6.2.26 If f maps [a, b] into R
k
 and if f  R() for some monotonically increasing 

function  on [a, b], then |f|  R() and  

   
b

a

b

a

|αdf f| d. 

Proof. Let  

  f = (f1,…., fk). 

Then  

  |f| = (f1
2
 + ….+ fh

h
)

1/2
 

Since each fi  R(), the function fi
2
  R() and so their sum f1

2
 +…+ fk

2
  R

()
. Since x

2
 is a 

continuous function of x, the square root functions of continuous on [0, M] for every real M.  

Therefore, |f|  R(). 
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Now, let y = (y1, y2,…, yk), where yi =  i
f  d, then  

   y =  f d 

and  

  |y|
2
 =   

i

ii

2

i
fyy  d 

        =    ii
fy d 

But, by Schwarz inequality  

   )t(fy
ii

  |y| |f(t)| (a  t  b) 

Then  

(1)  |y|
2
  |y|  |f| d 

If y = 0, then the result follows. If y  0, then divide (1) by |y| and get 

  |y|   |f| d 

or  
b

a

|f|  d   |f| d. 

Rectifiable Curves   

Definition 6.2.26 Let f : [a, b]  R
k
 be a map. If P = {x0, x1,…., xn} is a partition of [a, b], then  

  V(f, a, b) = lub 


n

1i

i
)x(f|  f(xi1)|, 

where the lub is taken over all possible partitions of [a, b], is called total variation of f on [a, b]. 

The function f is said to be of bounded variation on [a, b] if V(f, a, b) < + . 

Definition 6.2.27 A curve : [a, b]  R
k
 is called rectifiable if  is of bounded variation. The 

length of a rectifiable curve  is defined as total variation of , i.e., V(, a, b) = V(P, ).  

Thus, the length of rectifiable curve  is given by  

V(P, ) = sup. 1

1

( ) ( ) |
n

i i

i

x x  



  

for the partition P = {x0, x1,…., xn}. 
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Theorem 6.2.28 Let  be a curve in R
k
. If  is continuous on [a, b], then  is rectifiable and has 

length  

  V(P, ) = 
b

a

t |)('|  dt. 

Proof. We have to show that, 
b

a

t |)('|  dt = V(, a, b). Let P = {x0,…., xn} be a partition of [a, b]. 

By Fundamental Theorem of Calculus, for vector valued function, we have  

    
 






n

1i

n

1i

ix

1ix

1ii
dt)t('γ|)x(γ)x(γ|  

               




n

1i

ix

1ix

|)t('γ| dt 

             = 
b

a

dt|)t('γ|  

Thus by taking supremum both side, we have  

            V(, a, b)  
b

a

dt|)t('γ|  for all partition P                                            (1) 

Converse   

                 Let  be a positive number. Since  is continuous and hence uniformly continuous 

on [a, b], there exists  > 0 such that  

  |(s)  (t)| < ,  if |s  t| < . 

If norm of the partition P is less then  and xi1  t  xi, then we have 

                        |(t)  (xi)| <  for xi1  t  xi 

                    |(t) |  |(xi)|  |(t)  (xi)| <  

   |(t)|  |(xi)| + , 

so that 

   


ix

1ix

|)t('γ|  dt   xi + |(xi)|  xi 
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             = 



ix

1ix

i
dt)]t('γ)x('γ)t('γ[ + xi 

              



ix

1ix

i

ix

1ix

dt)]t('γ)x('γ[dt)t('γ| +  xi 

              |(xi)  (xi1)| +  |xi – xi-1|+    xi 

                                              = |(xi)  (xi1)| + 2 .  xi 

 

Adding these inequalities for i = 1, 2,…, n, we get   

   



b

a

n

1i

γ|dt|)t('γ| (xi)  (xi1)| + 2 . (b  a) 

          = V(, a, b) + 2  (b  a) 

Since  is arbitrary, it follows that  

 
b

a

'γ| (t)| dt  V(, a, b)                                             (2) 

Combining (1) and (2), we have  

  
b

a

|)t('γ|  dt = V(, a, b) 

Therefore, length of   =  
b

a

'γ| (t)| dt.  

  

6.3   Check Your Progress 
Fill in the blanks in following question. 

Q.1 If f  R(), then |f |  R(). Is the converse true if not provide the suitable  

        example. 

Solution. If f  R(), then |f |  R(). (…………………) 

But the converse is not true. 

For Example 
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Let 
1, when x is rational

( )
1, when x is irrational

f x


 


 

Let P = {a = x0, x1,…., xn = b}be any partition of f on [a, b]. 

Let mi and Mi be infimum and supremum of f on [xi-1, xi], then 

                  mi = -1 and Mi = 1, for I = 1, 2, …, n. 

Now          L(P, f, ) = 
1

.
n

i i

i

m 


 = 
1

( 1).
n

i

i




   =  ………….. 

                  U(P, f, ) = 
1

.
n

i i

i

M 


 = 
1

(1).
n

i

i




   = …………… 

Therefore, 
b

a

f(x).dα(x) = sup.{L(P,f,α)}
P P[a,b] = Sup.{(a – b)}= a – b and 

                 
b

a

f(x).dα(x) = inf.{U(P,f,α)}
P P[a,b] = Inf.{(b – a)}= b – a. 

Hence, f   R(), but |f(x)| = ………… for all x, being constant function so |f|  R(). 

 

Q.2 If f  R(), then f
2
  R(). Is the converse true if not provide the suitable  

       example. 

Solution. If f  R(), then |f |  R(). (…………………) 

But the converse is not true. 

 

For Example 

Let 
1, when x is rational

( )
1, when x is irrational

f x


 


 

Let P = {a = x0, x1,…., xn = b}be any partition of f on [a, b]. 

Let mi and Mi be infimum and supremum of f on [xi-1, xi], then 

                  mi = -1 and Mi = 1, for I = 1, 2, …, n. 

Now          L(P, f, ) = 
1

.
n

i i

i

m 


 = 
1

( 1).
n

i

i




   =  ………….. 

                  U(P, f, ) = 
1

.
n

i i

i

M 


 = 
1

(1).
n

i

i




   = …………… 

Therefore, 
b

a

f(x).dα(x) = sup.{L(P,f,α)}
P P[a,b] = Sup.{(a – b)}= a – b and 
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b

a

f(x).dα(x) = inf.{U(P,f,α)}
P P[a,b] = Inf.{(b – a)}= b – a. 

Hence, f   R(), but f
2
 = ………… for all x, being constant function so |f|  R(). 

 

Change of Variable 

Q.3 If f is a continuous function on [a, b] and   is continuous and strictly increasing on [α, β]

where a =  ( α ) and b =  (β ), then 

                                            
βb

a α

f(x) dx= f( (y)) d (y)    

Solution. Let   be strictly monotonically increasing. 

Since  is strictly monotonic, therefore it is invertible, i.e.,  

           x =  (y) 

       y = 1  (x)    x in [a, b]. 

So that  = 1  (a) and β =  1  (b) 

Let P = {a = x0, x1,…., xn = b} be any partition of f on [a, b] and let Q = { = y0, y1,…., yn = β

}be corresponding partition of [α, β] . 

Putting, g(y) = f( (y), we have 

             i i i-1

n
f(x ).(x - x ) =

i=1
 ……………………..                                                 …(1) 

                                                                          
i i-1 i i-1[ (x - x ) = (y )- (y ) ]i ix          

Since    is continuous on the close and bounded interval, it is uniformly continuous on [a, b]. 

Therefore, μ(Q) 0 as μ(P) 0, then   

                i i i-1

n
f(x ).(x - x ) ................. when

i=1

 μ(P) 0 . 

and , i i i-1

n
g(y ).[( (y ) - (y )] g(y)d( ( )) when

i=1

y





    μ(Q) 0 . 

Therefore letting the limit as μ(P) 0  in (1), we get 

          
βb

a α

f(x) dx= ................... f( (y)) d( (y))   . 

6.4  Summary  



Real Analysis  MAL-512 

DDE, GJUS&T, Hisar  152 |  

 

 

On setting function α (x) as identity function the R-S integral reduces to Riemann integral. 

Upper and lower integral always exist for bounded function but these may not be equal for all 

bounded functions. There exists the functions which are R-S integrable but for which limit of 

sum S(f, P, α) does not exist, i.e., the existence of limit of S(f, P, α) is only a sufficient condition 

for function to be R-S integrable. Also continuity is sufficient condition for f  R(). Bounded 

and continuous function f can be integrated with respect to any monotonic increasing function 

α. Bounded and monotonic function f can be integrated with respect to any monotonic 

increasing and continuous function α. Theorem 6.2.29 is similar to theorem, integration by 

parts’ for Riemann integral. 

 

6.5  Keywords 
Supremum and Infimum of a Set, Riemann Integral, Continuity, Monotonicity, Function of 

Bounded Variation, Lagrange’s Mean Value theorem. 

 

6.6  Self-Assessment Test  

Q.1 Evaluate the following integrals:  

(i)   

4

1

2dx])x[x(               (ii) 
3

0

x  dx
3
 

(iii) 
3

0

]x[  d(e
x
)   (iv) 

2/π

0

x  d(sin x). 

(v) 
3

0

( [ ])x d x x                            (vi) 
1

1

( ) | |x d x


  

Q.2 Evaluate 
1

2

0

x d x from definition of Riemann-Stieltjes Integral 

 

6.7  Answers to check your progress  

 
A.1 Do practice on similar lines as in Riemann integral, (a – b), (b – a), 1. 

A.2 Do practice on similar lines as in Riemann integral, (a – b), (b – a), 1. 
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A.3  i i i-1

n
g(y ).[( (y ) - (y )]

i=1

  , 
b

a

f(x) dx, g(y)d( (y)).
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MAL-512: M. Sc. Mathematics (Real Analysis) 

Lesson No. VII                                                            Written by Dr. Vizender Singh 

 

Lesson: Measure Theory 

Structure: 

7.0    Learning Objectives 

7.1    Introduction  

7.2    Measure Theory 

7.3    Check Your Progress 

7.4    Summary 

7.5    Keywords 

7.6    Self-Assessment Test  

7.7    Answers to check your progress  

7.8    References/ Suggested Readings 

 

7.0 Learning Objectives 

 Learning objective is to gain understanding of the outer measure theory and definition 

with main properties. To construct Lebesgue's measure on the real line. To explain 

the basic advanced directions of the theory. 

 The learning objectives of this lesson are to study concept of outer measure which is 

generalizations of length, area and volume, but are useful for much more abstract and 

irregular sets than intervals in R or balls in R
3
 

 The objective of constructing an outer measure on all subsets of X is to pick out a 

class of subsets (to be called measurable) in such a way as to satisfy the countable 

additivity property 

 Learning objective is to generalize the Riemann integral, which has its origins in the 

notions of length and area. 

 To introduce the concepts of outer measure and measure: to show their basic 

properties, and to provide a basis for further studies in Analysis, Probability, and 

Dynamical Systems. 
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7.1 Introduction 

In previous classes we have studied about the length of interval. It is defined as 

difference of ends points. Clearly, length of each of interval [a, b], [a, b), (a, b] and (a, b) is b – 

a. I is an interval then length of I is denoted by l(I). The concept of measure in an interval is an 

extension of concept of length. In the present lesson, we shall discuss the concept of measure 

with the help of length of interval. As we know that length is an example of a set function, i.e., a 

function which associates an extended real number to each set in some collection of sets. In the 

case of length, the domain is the collection of all intervals. The set function l satisfying the 

following conditions:  

(i) l(I)   0 for all intervals I, i.e., length of any interval is always non-  

     negative.  

(ii) If {Ii} is countable collection of mutually disjoint interval such that 
i

iI is   

      an interval then, l(
i

iI ) = 
i

i )I(l . 

            (iii) For any fixed real number x, l(I) = l(I + x). 

7.2 Measure Theory 

Definition 7.2.1 The length of an interval I =[a, b] is defined to be the difference of the end 

points of the interval I and is written as l(I)= b - a. 

The interval I may be closed, open, open-closed or closed-open, the length l(I) is always 

equals ba, where a < b. In case a = b, the interval [a, b] becomes a point with length zero. 

Definition 7.2.2 A function whose domain of definition is a class of sets is called a set function. 

In the case of length, the domain is the collection of all intervals.  

In the above, we have said that in the case of length, the domain is the collection of all intervals. 

Length of a Set  

Definition 7.2.3 Let A be an open set in R and let A  be written as a countable union of 

mutually disjoint open intervals {Ii} i.e.,  

   A = 
i

iI . 

Then the length of the open set A  is defined by 
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   l(A ) = 
i

i )I(l . 

Also, if A1 and A2 are two open sets in R such that A1  A2, then  

   l(A1)  l(A2). 

Hence, for any open set A in [a, b], we have  

   0  l(A )  b  a.  

Outer Measure 

Definition 7.2.4 The Lebesgue outer measure or simply the outer measure m*(A) of an arbitrary 

set A is given by  

   m*(A) = inf 
i

i ),I(l  

where the infimum is taken over all countable collections {Ii} of open intervals such that A  


i

iI . 

Remark 7.2.5 The outer measure m* is a set function which is defined from the power set P(R) 

into the set of all non-negative extended real numbers.  

Theorem 7.2.6 Prove the following properties of outer measure function: 

(a) m*(A)  0, for all sets A.  

(b) m*() = 0. 

(c) If A and B are two sets with A  B, then m*(A)  m*(B). 

(d) m*(A) = 0, for every singleton set A.  

(e) m* is translation invariant, i.e., m*(A + x) = m* (A), for every set A and  

     for every xR. 

Proof.  (a) Since the length is always non-negative and infimum of non-negative is non-

negative. Therefore by definition of outer measure, 

                        m*(A)  0, for all sets A.  

(b) Since    In for every open interval in R such that     

   In = 









n

1
x,

n

1
x  
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So     0  m*( )  l(In) or  0  m*( )  
n

2
, for each nN. For arbitrary large n,  

n

2
 0. Hence, 

m*() = 0. 

 

(c) Let {In} be a countable collection of disjoint open intervals such that                   

      B  
n. In such a way ( ) = (I ). Thenn n

nn n

I m l A I B  as A  B and therefore  

   m*(A)  
n

n )I(l = ( )m
B . 

This property is known as monotonicity.   

(d) Since  

 {x}   In = 









n

1
x,

n

1
x  

is an open covering of {x}, so   0   m*({x} )  l(In) and l(In) = 
n

2
, for each nN.  For arbitrary 

large value of n,  
n

2
 0. 

Another Proof. Let A = {x} be singleton set. 

Then we can write 

                              {x} = [x, x]. 

                           m*(A) = length of interval = x – x =0. 

(e) Let I be any interval with end points a and b, the set I + x defined by  

   I + x = {y + x: yI} 

is an interval with end points a + x and b + x. Also,  

   l(I + x) = l(I). 

 Now, let  > 0 be given. Then there is a countable collection {In} of open intervals such 

that A 
n

nI  and satisfies 

   
n

n )I(l  m*(A) + . 
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Also,  A + x  
n

n )xI(  . Therefore  

  m*(A + x)   (
n

l In + x) = (
n

l In)  m*(A) +  

Since  > 0 is arbitrary, we have m*(A + x)  m*(A). If we take A = (A + x)  x and use the 

above arguments, we find m*(A)  m*(A + x). Hence, m*(A + x) = m* (A), i.e., m* is 

translation invariant. 

Theorem 7.2.7 The outer measure of an interval I is its length.  

Proof. Case-1 First let I be a closed finite interval [a, b]. Since, for each  > 0, the open 

interval )
2

,
2

(





 ba covers [a, b], we have  

   m*(I)  l )
2

,
2

(





 ba = b  a + . 

Since this is true for each  > 0, we must have  

   m*(I)  b  a = l(I). 

Now, we will prove that  

   m*(I)  b  a      …(1) 

Let  > 0 be given. Then there exists a countable collection {In} of open intervals covering [a, 

b] such that  

   m*(I) >  
n

n )I(l      …(2) 

By the Heine-Borel Theorem, any collection of open intervals which cover [a, b] has a finite 

sub-cover which covers [a, b], it suffices to establish the inequality (2) for finite collections {In} 

which cover [a, b]. 

 Since a[a, b], there must be one of the intervals In which contains a and let it be (a1, b1). 

Then, a1 < a < b1. If b1  b, then b1[a, b], and since b1  (a1, b1), there must be an interval (a2, 

b2) in the finite collection {In} such that b1(a2, b2); that is a2 < b1 < b2. Continuing in this 

manner, we get intervals (a1, b1), (a2, b2),… from the collection {In} such that 

   ai < bi1 < bi,  i = 1, 2,…  

where b0 = a. Since {In} is a finite collection, this process must terminate with some interval (ak, 

bk) in the collection. Thus  
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k

i

ii

n

n balIl
1

),()(  

     = (bk ak) + (bk1 ak1) +…+ (b1  a1) 

     = bk  (ak  bk1)  … (a2  b1)  a1 

     > bk  a1 

     > b  a,  

since ai  bi 1 < 0, bk > b and a1 < a. This, in view of (2), verifies that  

   m*(I) > b  a  . 

                                m*(I)  b  a.  

Hence, m*(I) = m*([a, b]) = b  a.  

Case-2 Now, let I is any finite interval. Then given an  > 0, there exists a closed finite interval 

J  I such that  

   l(J) > l(I)  . 

Therefore, 

  l(I)   < l(J) = m*(J)  m*(I) = l(I) 

   l(I)   < m*(I)  l(I). 

This is true for each  > 0. Hence m*(I) = l(I). 

Case-3 Suppose I is an infinite interval. Then given any real number r > 0, there exists a closed 

finite interval J  I such that l(J) = r. Thus m*(I)  m*(J) = l(J) = r , that is m*(I)  r for any 

arbitrary real number r > 0. Hence m*(I) =  = l(I).  

Theorem 7.2.8 Let {An} be a countable collection of subsets of real numbers. Then  

   m*(
n n

nn AmA  )(*)       

 Proof. If m*(An) =  for some nN, the inequality holds. Let us assume that m*(An) < , for 

each nN. Then, for each n, and for a given  > 0,  a countable collection {In,i}i of open 

intervals such that that An  
i

i,nI  satisfying  

     

i

n

nin AmIl 2)(*)( ,  

Then  
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n n i

inn IA , . 

However, the collection {In,i}n,i forms a countable collection of open intervals, as the countable 

union of countable sets is countable  and covers 
n

nA . Therefore 

   m* 
n n

in

i

n IlA  )()( ,
 

            
n

n

nAm 2)(*( ) 

          = 
n

nAm )(*  + . 

But  > 0 being arbitrary, the result follows. 

This theorem shows that m* is countable sub-additive. 

Corollary 7.2.9 If a set A is countable, then m* (A) = 0. 

Proof.  Let A be countable set. We know that every countable can be written in the form of 

sequence. Therefore, 

                                              A =  1 2,  ,  .,  ,  .na a a   

Clearly, A = { }i
i

a  

          A is countable union of singleton sets{ }ia . 

          m* (A) = m* ( { }i
i

a )  *({ })i

n

m a                                [by above theorem] 

                          = 0 

          m* (A)  0, but m* (A)  0. 

          m* (A) = 0 

Therefore, outer measure of countable set is zero. 

Note: The converse of the result is not necessarily true, i.e., a set with outer measure  

may or may not be countable. For example, Cantor’s ternary set has outer measure zero is 

uncountable. 

Note: Each of the sets N, I, Q and algebraic numbers has outer measure zero since each one is 

countable. A set with outer measure non-zero is uncountable. 

 Corollary 7.2.10 The set [0, 1] is uncountable.  
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 Proof. Let the set [0, 1] be countable. The m*([0, 1]) = 0 and so l([0, 1]) = 0. This is absurd as 

the length is equal to 1. Hence the set [0, 1] is uncountable.  

Theorem 7.2.11 The Cantor set C is uncountable with outer measure zero.  

Proof. Let En be the union of the intervals left at the nth stage while constructing the Cantor set 

C.  En consists of 2
n
 closed intervals, each of length 3

n
. Therefore  

   m*(En)  2
n
. 3

n
. 

But each point of C must be in one of the intervals comprising the union En, for each nN, and 

as such C  En, for all nN. Hence  

   m*(C)  

n

3

2








. 

This being true for each nN, letting n gives m*(C) = 0.  

Theorem 7.2.12 If m*(A) = 0, then m*(A  B) = m*(B).  

Proof. By countable sub-additivity of m* and m*(A) =  0, we have  

   m*(A  B)   m*(A) + m*(B) = m*(B),            (1 )                           

But B  AB gives 

   m*(B)  m*(A  B).                                             (2) 

Hence the result follows by (1) and (2). 

Lebesgue Measure  

 The outer measure does not satisfy the countable additivity. To have the property of 

countable additivity satisfied, we restrict the domain of definition for the function m* to some 

suitable subset, M, of the power set P(R). The members of M are called measurable sets and we 

defined as : 

 Definition 7.2.13 A set E is said to be Lebesgue measurable or simply measurable if for each 

set A, we have  

   m*(A) = m*(A  E) + m*(A  E
c
).   …(3) 

 Since A = (A  E)  (A  E
c
) and m* is sub-additive, we always have  

   m*(A)  m*(A  E) + m*(A  E
c
). 

Thus to prove that E is measurable, we have to show, for any set A, that  

   m*(A)  m*(A  E) + m*(A  E
c
).   …(4) 
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The set A in reference is called test set. 

Definition 7.2.14 The restriction of the set function m* to that to M of measurable sets, is called 

Lebesgue measure function for the sets in M. 

So, for each EM, m(E) = m*(E). The extended real number m(E) is called the Lebesgue 

measure or simply measure of the set E. 

Theorem 7.2.14 If E is a measurable set, then so is E
c
. 

Proof. If E is measurable, then for any set A,  

   m*(A) = m*(A  E) + m*(A  E
c
). 

                                               = m*(A  E
c
 ) + m*(A E) 

                                               = m*(A  E
c
 ) + m*(A E

cc
)  

Hence E
c 
 is measurable. 

            
 

Note: The sets  and R are measurable sets.  

Theorem 7.2.15 If m*(E) = 0, then E is a measurable set.  

Proof. Let A be any set. Then  

   A  E  E   m*(A  E)  m*(E) = 0 

and    A  E
c
  A  m*(A  E

c
)  m*(A). 

 

Therefore, m*(A)  m*(A  E) + m*(A  E
c
),  

Hence E is measurable.  

Theorem 7.2.16 If E1 and E2 are measurable sets, then so is E1  E2. 

Proof. Since E1 and E2 are measurable sets, so for any set A, we have  

  m*(A) = m*(A  E1) + m*(A  c
1E ) 

             = m*(A  E1) + m*([A  c
1E ]  E2) + m*([A  c

1E ]  c
2E ) 

             = m*(A  E1) +m*([A  E2]  c
1E ) + m*(A  c

1E  c
2E ) 

             = m*(A  E1) + m*(A  E2  c
1E ) + m*(A  [E1  E2]

c
) 

But A  (E1  E2) = [A  E1]  [A  E2  c
1E ] and 

  m* (A  (E1  E2))  m*  [A  E1]+ m*  [A  E2  c
1E ] . 
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Therefore,     m*(A)   m*(A  [E1 E2]) + m*(A [E1  E2]
2
), 

Hence E1E2 is a measurable set.  

Theorem 7.2.17 The intersection and difference of two measurable sets are measurable.   

Proof. For two sets E1 and E2, we can write (E1  E2)
c
 = c

1E  c
2E  and E1  E2 = E1

c
2E . Now 

using the fact that union of two measurable sets is measurable and complement of a measurable 

set is measurable, ones get the result. 

Theorem 7.2.18 The symmetric difference of two measurable sets is measurable. 

Proof.  The symmetric difference of two sets E1 and E2 is given by E1  E2 = (E1  E2)  (E2  

E1) and by above arguments we get the result. 

Definition 7.2.19 A nonempty collection A of subsets of a set S is called an algebra (or Boolean 

algebra) of sets in P(S) if  A and  

(a) A, B A    A  B A 

(b) A A   A
c
  A. 

                  By DeMorgan’s law it follows that if A is algebra of sets in P(S), then  

(c) A, B  A    A  B A, 

while, on the other hand, if any collection A of subsets of S satisfies (b) and (c), then it also 

satisfies (a) and hence A is an algebra of sets in P(S). 

Corollary 7.2.20 The family M of all measurable sets (subsets of R) is algebra of sets in P(R). 

In particular, if {E1, E2, …, En} is any finite collection of measurable sets, then so are 

 
n

1i

n

1i

i1 EandE
 

. 

Theorem 7.2.21 Let E1, E2,…, En be a finite sequence of disjoint measurable sets. Then, for any 

set A,  

   m* 


























n

1i

i

n

1i

i ).EA(*mEA   

Proof. We use induction on n. For n = 1, the result is clearly true. Let it be true for (n1) sets, 

and then we have  

   m* 
































1n

1i

i

1n

1i

i ).EA(*mEA      
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Adding m*(A  En) on both the sides and since the sets Ei (i = 1, 2,…, n) are disjoint,  we get  

  m* 






























n

1i

in

1n

1i

i )EA(*m)EA(*mEA   

  m*
1 1

*
n n

c

i n i n

i i

A mE E A E E
 

      
          
      

 = 



n

1i

i ),EA(*m  

But the measurability of the set En, by taking 












n

1i

iEA  as a test set, we get  

 m*









































































c
n

n

1i

in

n

1i

i

n

1i

i EEA*mEEA*mEA   

Hence, 

  


























n

1i

n

1i

i *mEA*m  (A Ei). 

Corollary 7.2.22 If E1, E2,…, En is a finite sequence of disjoint measurable sets, then  

  














 n

i1

i

n

1i

i )E(mEm  . 

Theorem 7.2.23 If E1 and E2 are any measurable sets, then   

   m(E1  E2) + m(E1  E2) = m(E1) + m(E2). 

Proof. Let A be any test set. Since E1 is a measurable set, we have  

   m*(A) = m*(A  E1) + m*(A  )Ec
1  

Take A = E1  E2, and adding m(E1  E2) on both sides, we get  

 m(E1  E2) + m(E1  E2) = m(E1) + m(([E1  E2]  c
1E ) + m(E1  E2). 

                                                            [  if a set E is measurable, then m*(A) = m(A)]   

Since  

  [(E1  E2) 
c
1E ]  [E1  E2] = E2 

is a union of disjoint measurable sets,  we note that  

  m([E1  E2]  c
1E ) + m(E1  E2) = m(E2). 

Hence the result follows.  
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Theorem 7.2.24 Let A be an algebra of subsets of a set S. If {Ai} is a sequence of sets in A, then 

there exists a sequence {Bi} of mutually disjoint sets in A such that  

    









1i 1i

ii AB . 

Proof. If the sequence {Ai} is finite, the result is clear. Now let {Ai} be an infinite sequence. 

Set B1= A1, and for each n  2, define the sequence {Bn} such that  

   Bn = An  






 




1n

1i

iA  

        = An  c
1n

c
2

c
1 A...AA  . 

Also here, B1 = A1, B2 = A2- A1, B3 = A3- (A1  A2 )…… 

It is clear that 

(i) Bn  A, for each nN, since A is closed under the complementation and finite 

intersection of sets in A.  

(ii) Bn  An, for each nN. 

(iii) Bm  Bn =  for m  n, i.e., the sets Bn are mutually disjoint.  

Let Bn and Bm to be two sets and with m < n. Then, because Bm  Am, 

we have  

    Bm  Bn  Am  Bn 

    = Am  [An  ]A...A...A c
1n

c
m

c
1   

    = [Am  c
mA ]  … 

    =   … 

    = . 

      (iv)    









1i 1i

ii AB . 

Since Bi  Ai, for each iN, we have  

   









1i 1i

ii AB . 
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Now, let x  


1i

iA then, x must be in at least one of the sets Ai’s. Let n be the least value of i 

such that x  Ai. Then x  Bn, and so x 


1n

nB . 

 Hence  

   









1i 1i

ii BA . 

Hence, the theorem proves. 

Theorem 7.2.25 A countable union of measurable sets is a measurable set.     

Proof. Let M = {Ei} be a sequence of measurable sets and let     

               E = 


1i

iE . To prove E to be a measurable set, we may assume, without any loss of 

generality, that the sets Ei are mutually disjoint.  

 For each nN, define Fn = 
n

1i

iE


.Since M is an algebra of sets and E1, E2,…En are in M, 

the sets Fn are measurable. Therefore, for any set A, we have  

   m*(A) = m*(A  Fn) + m*(A  c
nF ) 

               m*(A  Fn) + m*(A  E
c
),  

since  

   














1ni

i
c
n EF   E

c
  E

c
. 

But we observe that  

   m*(A  Fn) = 


n

1i

A(*m  Ei). 

Therefore,  

   m*(A)  



n

1i

c
i ).EA(*m)EA(*m  

This inequality holds for every nN and since the left-hand side is independent of n, letting 

n, we obtain  
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   m*(A)  


1i

*m (A  Ei) + m*(A  E
c
) 

               m*(A  E) + m*(A  E
c
), 

in view of the countable subadditivity of m*. Hence E is a measurable set.  

Theorem 7.2.26 Let E be a measurable set. Then any translate E + y is measurable, where y is a 

real number. Furthermore, 

   m(E + y) = m(E). 

Proof. Let A be any set. Since E is measurable, we have  

   m*(A) = m*(A  E) + m*(A  E
c
) 

   m*(A + y) = m*([A  E] + y) + m*([A  E
c
] +y), 

in view of m* is invariant under translation. It can be verified that  

   








).yE()yA(y]EA[

)yE()yA(y]EA[

cc
 

Hence 

  m*(A + y) = m*([A + y]  [E + y]) + m*([A + y]  [E
c
 + y]). 

Since A is arbitrary, replacing A with A  y, we obtain  

   m*(A) = m*(A  E + y) + m*(A  E
c
 + y). 

Now since m* is translation invariant, the measurability of E + y follows by taking into account 

that (E + y)
c
 = E

c
 + y.  

Theorem 7.2.26 Let {Ei} be an infinite decreasing sequence of measurable sets; that is, a 

sequence with Ei+1  Ei for each i N. Let m(E1) <  . Then  

   m




















n
1i

i limE m(En). 

Proof.  Let m(E1) <  . 

Set E = 


1i

iE  and Fi = Ei  Ei+1. Then the sets Fi are measurable and pair wise disjoint, and  

   E1  E = 


1i

iF . 
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Therefore, 

   m(E1  E) =  









1 1

1)()(
i i

iii EEmFm . 

But m(E1) = m(E) + m(E1E) and 

 m(Ei) = m(Ei+1) + m(Ei Ei+1), for all i  1, since E  E1 and Ei+1  Ei. 

 Further, using the fact that m(Ei) < , for all i  1, it follows that  

   m(E1  E) = m(E1)  m(E) 

and         m(Ei  Ei+1) = m(Ei)  m(Ei+1),  i  1.  

Hence, 

   m(E1)  m(E) = 





1

1))()((
i

ii EmEm  

               = 






n

i

ii
n

EmEm
1

1)()((lim  

               = 
n

lim {m(E1)  m(En)} 

               = M (E1)  
n

lim m(En).     

Since m(E1) < , it gives  

   m(E) = 
n

lim m(En).  

Remark 7.2.27 The condition m(E1) < ,  in above Theorem  cannot be relaxed.  

Consider the sets En given by En = ]n, [, nN. Then {En} is a decreasing sequence of 

measurable sets such that m(En) =  for each nN and 





1n

nE . Therefore,  

  ,)E(mlim n
n




     while    m() = 0.  

F - Set 

Definitio7.2.29 A set which can be written as countable (finite or infinite) union of closed sets 

is called an F-set, i.e., a set A is F-set if A = 
i N

Fi



, where Fi are closed set. 
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 Example:  F-set are: A closed set, A countable set, A countable union of F-sets, an open 

interval (a, b) since  

    (a, b) = 













1n n

1
b,

n

1
a = a countable union of closed sets. 

and hence an open set.  

G-Set 

Definition 7.2.30 A set which can be written as countable intersection of open sets is a G-set.  

 Examples: G-set are: An open set and, in particular, an open interval, A closed set, A 

countable intersection of G-sets.  

 A closed interval [a, b] since  

   [a, b] = 













1n n

1
b,

n

1
a = a countable intersection of open sets. 

Remark 7.2.31 Each of the classes F and G of sets is wider than the classes of open and 

closed sets.  The complement of an F-set is a G-set, and vice-versa.  

Borel Set 

Definition 7.2.32 A set which can be obtained by taking countable union or intersection of open 

and closed set is called Borel set.  

Note: F-set  and G-set are always open set. 

Theorem 7.2.33 Let A be any set. Then: 

(a) Given  > 0,  an open set O  A such that  

   m*(O)  m*(A) +  

while the inequality is strict in case m*(A) < ; and hence m*(A) = 
OA

inf  m*(O), 

(b)  a G-set G  A such that  

   m*(A) = m*(G). 

Proof. (a) Assume first that m*(A) < . Then there exists a countable collection {In} of open 

intervals such that A  
n

nI  and  

    
n

n AmIl )(*)(                         [By definition of infimum] 
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Set, O = 


1n

nI . Clearly O is an open set and  

   m*(O) = m* 













n

nI  

     
n

n

n

n IlIm )()(* < m*(A) + . 

(b) Choose  = 
n

1
,  nN in (a). Then, for each nN,  an open set On  A such that 

   m*(On)  m*(A) + 
n

1
. 

Define G = 


1n

.nO . Clearly, G is a G-set and G  A. Moreover, we observe that  

   m*(A)  m*(G)  m*(On)  m*(A) + 
n

1
, nN. 

Letting n we have m*(G) = m*(A). 

Theorem 7.2.34 Let E be a given set. Then the following statements are equivalent: 

(a) E is measurable. 

(b) Given  > 0, there is an open set O  E such that m*(O  E) < , 

(c) There is a G-set G  E such that m*(GE) = 0. 

(d) Given  > 0, there is a closed set F  E such that m*(E  F) < , 

(e) There is a F-set F  E such that m*(E  F) = 0. 

Proof. (a)  (b) : Suppose first that m(E) < , then  there is an open set O  E such that  

   m*(O) < m*(E) + . 

Since both the sets O and E are measurable, we have  

    m*(O E) = m*(O)  m*(E) < .  

Now let m(E) = . Write  

R = 


1n

nI , where  R is set of real numbers and In  are disjoint finite intervals Then, if En= E  In, 

m(En) < . We can find open sets On  En such that  
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   m*(On  En) < 
n2


. 

Define O = 


1n

nO . Clearly O is an open set such that O  E and satisfies  

   O  E =   













1n 1n 1n

nnn O(EO  En). 

Hence 

   m*(O E)  


1n

*m (On  En) < . 

(b)  (c) : Given  = 1/n, there is an open set On  E with m*(On  E) < 1/n. Define G = 


1n

nO

. Then G is a G-set such that G  E and 

   m*(G E)  m*(On  E) < 
n

1
,    nN. 

This on letting n proves (c).  

(c)    (a) : Write E = G  (G E). But the sets G and GE are measurable since G is a Borel 

set (As Every Borel Set is Measurable) and GE is of outer measure zero. Hence E is 

measurable.  

(a)  (d) : E
c
 is measurable and so, in view of (b), there is an open set O  E

c
 such that m*(O 

E
c
) < . But OE

c
 = E  O

c
. Taking F = O

c
, the assertion (d) follows.  

(d)  (e) : Given  = 1/n, there is a closed set Fn  E with m*(E Fn) < 1/n. Define F = 


1n

nF . 

Then F is a F-set such that F  E and  

   m*(EF)  m*(E Fn) < 
n

1
,  nN.  

Hence the result in (e) follows on letting n. 

(e)  (a) : The proof is similar to (c)  (a). 
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Definition 7.2.36 An algebra A of sets is called a -algebra (or -Boolean algebra or Borel 

field) if it is closed under countable union of sets; that is, 


1i

iA , is in A whenever the countable 

collection {Ai} of sets, is in A. 

Note: It follows, from DeMorgan’s law, that a -algebra is also closed under countable 

intersection of sets.   The family M of all measurable sets (subsets of R) is a -algebra of sets 

in P(R). 

Theorem 7.2.37 Let {Ei} be an infinite sequence of disjoint measurable sets. Then  

   






















1i

i

1i

i ).E(mEm   

Proof.  For each nN, we have  

   m 














 n

1i

i

n

1i

i )E(mE . 

But 

    


 


1i

n

1i

ii EE ,     nN. 

Therefore, we obtain  

   m 


















 n

1i

i

1i

i ).E(mE  

Since the left-hand side is independent of n, letting n, we get  

   m 






















1i

i

1i

i ).E(mE  

The reverse inequality is countable sub-additivity property of m*. 

Definition 7.2.38 The -algebra generated by the family of all open sets in R, denoted B, is 

called the class of Borel sets in R. The sets in B are called Borel sets in R.  

Examples:  Each of the open sets, closed sets, G-sets, F-sets, G-sets, F-sets, etc., are 

simple type of Borel set.  

Theorem 7.2.39 Every Borel set in R is measurable; that is, B  M.  

Proof. We prove the theorem in several steps by using the fact that M is a -algebra. 
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Step-1: The interval (a, ) is measurable.  

It is enough to show, for any set A, that  

   m*(A)  m*(A1) + m*(A2), 

where A1 = A  (a, ) and A2 = A  (  , a].  

 If m*(A) = , our assertion is trivially true. Let m*(A) < . Then, for each  > 0,  a 

countable collection {In} of open intervals that covers A and satisfies  

   
n

n )I(l < m*(A) +  

Write nI = In  (a, ) and nI   = In  ( , a]. Then,  

   nI   nI   = {In  (a, )}  {In  ( , a)} 

                  = In  ( , ) 

       = In, 

and nn II   = . Therefore,  

   l(In) = l(  )In l( )In
  

           = m*( )I(*m)I nn
  

But  

  A1  [ In]  (a, ) =  (In  (a, )) =  nI , 

so that m*(A1)  m*  














n

n

n

n )I(*mI . Similarly A2  
n

nI   and so  

            m*(A2)   
n

n )I(*m .  

Hence, 

   m*(A1) + m*(A2)   
n

nn )}I(*m)I(*m{  

          = )I( n

n

l < m*(A) + . 

Since  > 0 is arbitrary, this verifies the result.  

Step-2: The interval (, a] is measurable, since  

   (, a] = (a,  )
c
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Step 3: The interval (, b) is measurable since it can be expressed as a countable union of the 

intervals of the form as in Step 2; that is,  

   (, b) = 





1n

]
n

1
b,] . 

Step 4 : Since any open interval ]a, b[ can be expressed as  

   (a, b) = ( , b[  ]a, ), 

it is measurable.  

Step 5 : Every open set is measurable. It is so because it can be expressed as a countable union 

of open intervals (disjoint).  

 Hence, in view of Step 5, the -algebra M contains all the open sets in R. Since B is the 

smallest -algebra containing all the open sets, we conclude that B  M. This completes the 

proof of the theorem.  

Corollary 7.2.40 Each of the sets in R: an open set, a closed set, an F-set and a G-set is 

measurable.  

Non-Measurable Sets  

Most of sets in analysis are measurable. But there are some sets which are non-measurable. 

Definition 7.2.41 If x and y are real numbers in [0, 1), then the sum modulo 1, denoted by 
o
 , of 

x and y is defined by    

   x 
 y = 









1yx,1yx

1yx,yx
 

Example: (i) 
1 1 3 1 1

as 1
2 4 4 2 4
     

                 (ii) 
2 1 2 1 2 1

1as 1
3 2 3 2 3 2
      . 

Definition 7.2.42 If E is a subset of [0, 1), then the translate modulo 1 of E by y is defined by  

   E

 y = {z:  = x + y, x E}. 

 

Note:  
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(i) 

  is closed in [0, 1), i.e., x, y  [0, 1)  x


 y  [0, 1).  

(ii) The operation 

  is commutative and associative.  

Now, we prove that the measure (Lebesgue) is invariant under translate modulo 1. 

Theorem 7.2.43 Let E  [0, l] be a measurable set and y[0, 1] be given.  

                        Then the set E + y is measurable and m(E 

 y) = m(E). 

Proof. For any measurable set E of [0, 1), define 

   1

2

[0,1 )

[1 ,1).

E E y

E E y

  


  
 

 Clearly E1 and E2 are two disjoint measurable sets such that E1  E2 = E and E1  E2 = 

  . Therefore,  

   m(E) = m(E1) + m(E2). 

Now, for x  E1    0   x < 1 – y  0 + y   x + y < 1 – y + y = 1 

                               y   x + y < 1  

Therefore,                  E1


 y = {x 


  y, x E1} = {x + y, x E1} = E1  

                               E1


 y is measurable 

Now if for x  E2    1 - y   x < 1   1   x + y < 1+ yx 

  y = x + y - 1 

Therefore,                  E2


 y = {x 


  y, x E2} = E2 + (y – 1) 

  E2


 y is also measurable and m(E2


 y) = m(E2


 y – 1) = m(E2) 

                                                              [  Lebesgue measure is translation invariance] 

Further, E

 y = (E1  E2) 


 y = E1


 y  E2


 y, but since E1


 y and E2


 y are disjoint 

measurable sets. 

Therefore, m(E

 y) = m(E1


 y) + m(E2


 y) = = m(E1) + m(E2) = m(E) 

Hence, m is invariant under 

 . 

Theorem 7.2.44 There exists a non-measurable set in the interval [0, 1].  
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Proof. We define an equivalence relation ‘~’ in the set I = [0, 1] by saying that x and y in I are 

equivalent, to be written  x ~ y, if x  y is rational. Clearly, the relation ~ partitions the set I into 

mutually disjoint equivalence classes, that is, any two elements of the same class differ by a 

rational number while those of the different classes differ by an irrational number.  

 Construct a set P by choosing exactly one element from each equivalence class  this is 

possible by the axiom of choice. Clearly P  [0, 1]. We shall now show that P is a 

nonmeasurable set.  

 Let {ri} be an enumeration of rational numbers in [0, 1] with r0 = 0. Define  

   Pi = P + ri. 

Then P0 = P. We further observe that:  

(a) Pm  Pn = , m  n. 

(b) 
n

nP = [0, 1]. 

Proof (a). Let if possible, y  Pm  Pn. Then there exist pm and pn in P such that  

   y = pm + rm = pn + rn 

  pm  pn = rm – rn,  whixh is a rational number  

  pm  pn, by the definition of the set P 

  m = n. 

This is a contradiction.  

Proof (b). Since each Pi   [0, 1), therefore, 
iP

i

= [0, 1).  

As each element x[0, 1) is in same equivalence classe and as such so x related to an element y 

(say) of P. Suppose ri is the rational number by which x differs from y.  

Then, xPi and hence [0, 1)  
n

nP . 

Therefore, 
n

nP = [0, 1]. 

Now, assume that P is measurable. We know that each Pi is a “ translation modulo 1” of P. 

Therefore each Pi is measurable, and m(Pi) = m(P), 

  
i 0i

ii )P(m)P(m 
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      = 


0i

)P(m  

      = 








.0)P(mif

0)P(mif0
 

On the other hand  

  M(
i

i )P  = m([0, 1]) = 1. 

These lead to contradictory statements. Hence P is a non-measurable set.  

7.4     Check Your Progress 

Q.1. Prove that every interval is a measurable set and its measure is its length. 

        Fill in the blanks in the following question. 

Q.2. Let E be a set with m*(E) < . Then E is measurable if and only if, given  > 0,           

         there is a finite union B of open intervals such that  

   m*(E  B) < . 

Proof. Let E be measurable, and let  > 0 be given. Then there exists an open set O  E with 

m*(OE) < /2. As m*(E) is finite, so is m*(O). Further, since the open set O can be expressed 

as the union of  disjoint countable  open intervals {Ii}, there exists an nN such that  

   
2

)I(
1ni

i








l , 

since m*(O) < . 

Write B = 
n

1i

iI


. Then  

  E  B = …………………… (O  B)  (O  E). 

Hence  

  m*(E  B)  m* 











 




1ni

iI   + m*(O E) < . 

 Conversely, assume that for a given  > 0, there is a finite union, B = 
n

1i

iI


, of open 

intervals with m*(EB) < . Then there is an open set O  E such that  
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   m*(O) < m*(E) + .     …(1) 

 If we can show that m*(O  E) is arbitrarily small, it follows that E is a measurable set.  

 Write S = 
n

1i

i ).OI(


  Then S  B and so  

   S  E = (E  S)  (SE)  (E S)  (B E). 

However, 

   E  S = (E  O
c
)  (E  B

c
) = …………………….. 

Since, E  O. Therefore  

   S  E  (E  B)  (B  E) = E  B, 

and as such m*(SE) < . However, E  S  (SE) and so  

   m*(E) < …………….     …(2)  

Also O  E  (O S)  (SE) gives 

   m*(O E) < m*(O)  m*(S) + . 

Hence, in view of (1) and (2), we get  

   m*(O  E) < …………….. 

Q.3. Let {Ei} be an infinite increasing sequence of measurable sets, i.e., 

        Ei+1  Ei, for each iN. Then  

   




















n
1i

i limEm  m(En). 

Proof. If m(Ei) =  for some nN, then the result is trivial, since  

   m 











 




1i

iE   m(Ei) = , 

and m(En) = , for each n  i. Let m(Ei) < , for each iN. Set  

   E = 


1i

iE ,   Fi = Ei+1  Ei. 

Then the sets Fi are measurable being difference of two measurable sets and pair wise disjoint, 

and  

   E  E1 = ……………………. 
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Since 

                                    

1 2 3

1 2 1 2 1 i i-1

1 i+1 i

i=1

E E E ...

So, we can write

E = E (E - E ) (E - E ) ...(E - E ) ...

= E (E - E )


  

     

Also, E is disjoint union of measurable sets
 

  m(EE1) = m 1

1 11

............ ( )i i i

i ii

F m E E
  



 

 
   

 
   

  m(E)  m(E1) = 




n

1i
n

m{lim (Ei+1)  m(Ei)} 

              = ………………………… 

  m(E) = )E(mlim n
n 

. 

Q.4. Show that the set of all irrational numbers in [0, 1] is measurable and has outer  

        measure 1. 

Solution. Let us assume 

                                       A = set of all rational in [0, 1] 

                                       B = set of all irrational in [0, 1] 

Clearly, A and B are disjoint set and A  B =……………... 

Now, m(A  B) = m{[0, 1]} 

      ………….= 1 – 0                                                    …(1)         [ A  B =  ] 

Further, we know that, the set of rational Q is countable and A Q 

      A is ………                                        [ Any subset of countable is countable] 

      m(A) = 0. 

From (1), we have 

          m(B) = 1. 

7.5    Summary 
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The outer measure m* is a set function which is defined from the power set P(R) into the set 

of all non-negative extended real numbers. Outer measure of an interval is its length. Outer 

measure of empty set, singleton set and cantor’s set is zero. The outer measure function m
*
 is 

countable sub-additive and non-negative. 

To have the property of countable additivity satisfied, the outer measure function m
*
 is 

restricted to the domain of definition some suitable subset, M, of the power set P(R). In this 

lesson, we have shown that open sets, closed sets, countable unions of measurable sets, and 

complements of measurable sets are measurable. One might wonder if the intersection of 

measurable sets is also measurable. This is indeed the case. 

The theorem 7.2.33 states that any set with finite Lebesgue outer measure is contained in 

some open set with arbitrarily close outer measure. This may not seem like such a great feature 

right now. But it tells us that instead of dealing with our original set, we can use an open set 

with almost the same outer measure. The advantage is that we know some useful properties of 

open sets. 

Also, we have shown that the collection of Lebesgue measurable sets contains the empty set, 

is closed under set complement, and is closed under countable unions. Such a collection of sets 

is known as a σ-algebra. For now, we make the observation that since all open sets are 

measurable and the collection of measurable sets is closed under countable intersections, a set 

that is the intersection of a countable collection of open sets must be measurable. Similarly, all 

closed sets are measurable. Thus, a set that is the union of a countable collection of closed sets 

is also measurable. 

7.6    Keywords 
   Set Theory, Infimum and Supremum of Set, Countable Set, Cantor’s Set, Open  

   Set and Closed set. 

7.7    Self-Assessment Test 

Solve the following Questions. 

Q.1. If A  [a, b] is a Lebesgue measurable set then prove that m(A) + m(A
c
) = b – a. 

Q.2. Show that Cantor’s Set is measurable and its measure is zero. 

Q.3. If A and B are measurable subsets of [2, 3] such that m(A) = 1. Then prove that  

        m(A  B) = m(B). 

Q.4. Show that m
*
 is translation invariance.  

Q.5. If A = { x  R: 0 < x < 1 and x has decimal expansion not using the digit 7. Then  
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               show that m
*
 (A) = 0.   

7.8    Answers to Check Your Progress  

 
A.1. It follows in view of the fact that an interval is a Borel set and the outer measure  

        of an interval is its length. 

A.2. (E  B)  (B  E), E B, m*(S) + , m*(S) + . 

A.3. 


1i

iF , ( )im F , m{lim
n 

(En+1)  m(E1)} 

A.4. [0, 1], m(A) + m(B), countable 
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